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Preface

The solutions of corresponding 1-D initial-boundary value problem and inverse
problem for some parabolic, elliptic, and hyperbolic type equations are obtained,
using the method of lines for approach the partial differential equations (PDE) the
discretization in space applying the finite difference scheme with central
differences of second order of approximation (FDS) and the finite difference
scheme with the exact spectrum (FDSES) ([2], [14]). The solutions of
corresponding 3-D initial-boundary value problems are obtained with
conservative averaging method (CAM) using different spline approximations
methods: parabolic, hyperbolic, and exponential type spline-functions ([9], [12],
[32]). The FDS method in the uniform grid is used for the approximation the
differential operator of second order derivatives in the space. The solution in the
time is obtained analytically and numerically with continuous and discrete Fourier
methods. Using the spectral method are obtained new transcendental equation and
algorithms for obtaining the last two eigenvalues and eigenvectors of finite
difference operator. For the third kind boundary conditions (BC) this algorithm

depends on the value of the special parameter Q = L"% ; Where o1, g, are the
2

g1+0;
parameters (heat transfer coefficients) in the boundary conditions and L is the
length.
We define the (FDSES), where the finite difference matrix A of N+1-order is
represented in the form form A=W DWT, W, D are the matrixes of finite
difference eigenvectors and eigenvalues correspondently and the elements of
diagonal matrix D are replaced with the first N+1 eigenvalues from the differential
operator. If the diagonal matrix D contain the discrete eigenvalues, then the matrix
A is of the standard 3-diagonal form.
Are presents the results of analytical and numerical solutions of different
typical problems related to considered problems: boundary value problems of
ordinary differential equations (ODES), the problems of heat transfer and of
hyperbolic heat conduction equations and others.
Numerical solutions of the ODEs for method of lines in the time are obtained
analytically and numerically by the MATLAB solvers. For finite difference
approximation with central differences strong numerical oscillations are
presented, when the initial and boundary conditions are discontinuous. The
method of FDSES is without oscillations and this is effective for numerical
solutions. The advantages of the method of FDSES are demonstrated via
several numerical examples in comparison with some other well-known used



method. This method is more stable as the method of finite difference
approximation with central difference.
Finite difference scheme with exact spectrum is built using Fourier series for
different mathematical problems. Special heat transfer, wave, Poisson’s
problems are modelled, also with convection [1]. We can consider
corresponding 1-D partial differential equations of these problems in
following general form:
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where the coefficients ai, a2 and functions gi1(u), g2(u), f(u) can be depending
on the solution u = u(x; t) (x; t are the space and time variables). This problem
is modelled using method of lines and discrete approximation in x direction
and using FDS and FDSES. The convergence and error analysis of the method
of lines for solving the initial-boundary value problems of the PDE are given
in ([25],[22],[23].[24]). Linear problem is solved analytically and non-linear
problem numerically. Are considered also the system of PDE.
The approximations of the nonlinear heat transport problem are based on the
finite volume (FV) method. That procedure allows one to reduce the nonlinear
2-D heat transport problem described by a partial differential equation (PDE)
to an initial-value problem for a system of two nonlinear ordinary differential
equations (ODEs) of the first order. This method and method of finite-
difference scheme are compared.
The 3-D problems are reduced to the 1-D problems using the CAM ([13],
[31], [32]). The 2-D and 3-D problems are numerically solved with the ADI
method by Douglas and Rachford [37].
In the following 12 chapters different mathematical models and methods for
solving PDE are considered:

1) algebraical spectral problems for the self-conjugate and non-
conjugate finite difference operator with first, third kind BC and
periodical BCs,

2) mathematical models for linear and nonlinear heat transfer equations,
the dynamic and the shape hysteresis of magnetic droplet in a rotating
field, some ill- posed problems for heat transfer equations, the special
local and global approximations methods, some aspects for modelling
combustion process,

3) mathematical model for linear and nonlinear hyperbolic type PDEs,

4) mathematical model for solving the inverse and direct problems of 1D
hyperbolic heat conduction equation,




5)
6)
7)

8)

9)

mathematical model and CAM with hyperbolic type integral splines
for solving the 3-D problem for hyperbolic heat conduction equation,
linear and nonlinear heat transfer equations and the system of parabolic
type equations with the periodical BCs,

problem for Poisson equation and equations with convections with
periodical BCs,

diffusion equation with piecewise constant coefficients in multi
layered domain, reducing 3-D problems to 2-D initial-boundary value
problems,

mathematical model in the different coordinates for analytical
solutions of the 1-D continuous and discreate problems for Poisson’s
equations,

10) CAM with the integral splines for simple engineering calculations,
11) some applications of electromagnetic field and force, the forced and

free 2-D MHD convection flow around periodically placed cylinders,

12) numerical calculation for the flows field caused by the chain of

vortexes, the circular vortexes lines, the spiral vortexes in the cylinder
and in the conus.



Kopsavilkums

Attiecigo 1-D jaukta veida probléemu un dazu paraboliska, eliptiska un
hiperboliska tipa vienadojumu problému risinajumi tiek iegtti, izmantojot
taisnes metodi parcialo diferencialvienadojumu (PDV) diskretizacijai telpa ar
otras kartas aproksimacijas galigo diferencu shému ar centralajam diferencém
(GDS) un galigo diferen¢u shému ar precizo spektru (GDSPS) [2], [14].
PVD atbilstoso 3-D jaukta veida problému risinajumi tiek iegtti ar
konservativas viduvésanas metodi (KVM), izmantojot dazadas splainu
aproksimacijas: paraboliskas, hiperboliskas un eksponencialas funkcijas [9],
[12], [32].

GDS metodi vienmériga rezgl izmanto, lai aproksim&tu otras Kkartas
atvasinajuma diferencialo operatoru telpa. Atrisindgjumu iegiist analitiski un
skaitliski ar nepartraukto un diskréto Furjé metodi. Izmantojot spektralo
metodi, tiek ieglti jauni transcendentalie vienadojumi un algoritmi 3. veida

robeznosacijumiem atkariba no parametra Q = % vertibam, kur gy, g, ir
parametri robeznosacijumos (siltuma parneses koeficienti) un L ir segmenta
garums.

GDSPS metode tiek defingta ar N+1 kartas galigo diferen¢u matricu A=W DWT,
kur W, D ir galigo diferencu ipasvektoru un ipasvertibu matricas un diagonales
matrica D tiek aizstata ar pirmajam N+1 diferenciala operatora ipaSveértibam. Ja
diagonalaja matrica D ir diskrétas ipasvertibas, tad matrica A ir standarta 3-
diagonala forma (GDS).

Tiek paraditi dazadu tipisku problému analitiskie un skaitliskie risinajumi: parasto
diferencialo vienadojumu robeZproblémam, siltuma parneses un hiperboliska
siltuma vadisanas (HSV) vienadojumu problémam un citam. Skaitliskie
risinajumi iegiiti ar MATLAB paketi.

Aprekinos ar CDS metodi tiek iegiitas lielas skaitliskas svarstibas, ja sakuma un
robeZznosactjumi nav saskanoti. GDSPS metode ir bez svarstibam, un ta ir efektiva
skaitlisku risinajumu iegtisanai. GDSPS metodes prieksrocibas tiek demonstrétas,
izmantojot vairakus skaitliskus piemerus, salidzinot to ar kadu citu labi zinamu
metodi. Apskatita GDSPS metode ir stabilaka par GDS. GDSPS metode tiek art
veidota, izmantojot Furj€ metodi.

Tiek modelétas 1paSas siltuma parneses, vilnu izplatiSanas un stacionaras
problémas, ieskaitot art konvekciju [1].

Iesp&jams risinat arT atbilstoSas 1-D nelinearas problémas $ada vispariga forma:
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kur koeficienti a1, a2 un funkcijas gi(u), g2(u), f(u) var but atkarigi no
atrisingjuma U = u(x; t), (X; t ir telpas un laika mainigie, d — parcialais
diferencialoperators). ST probléma ir modeléta, izmantojot taisnu metodi un
diskrétu aproksimaciju X virziena ar GDS un GDSPS.
PVD jaukta veida problému risinasanai taiSnu metodes konvergence un kliidas
analize ir aprakstita [25], [22], [23], [24]. Lineara probléma tiek atrisinata
analttiski, bet nelineara — skaitliski. Tiek risinatas art PVD sistémas.
Nelinearo siltuma parneses problému aproksimacijai lieto galiga tilpuma
metodi. ST procediira lauj reducét nelinearo 2-D PVD problému uz sakuma
vertibu problému sisteémai ar diviem nelineariem pirmas kartas parastajiem
diferencialvienadojumiem. ST metode tick salidzinata ar galigo diferendéu
shému.
Izmantojot KVM, 3-D problémas tiek reducétas par 1-D problémam [13],
[31], [32]. 2-D un 3-D problémas risina skaitliski ar altern&joso virzienu
metodi (ADI metodi), lietojot Duglasa un Rahforda algoritmu [37].
Turpmakajas 12 nodalas tiek apliikoti dazadi matematiskie modeli un metodes
PVD risinaSanai:

1) algebriskas spektralas problémas saistitam un nesaistitam galigo diferencu
operatoram ar pirma, tresa veida un periodiskajiem robeznosacijumiem
(RN);

2) matematiskie modeli lineariem un nelineariem siltuma parneses
vienadojumiem, magnétisko pilienu dinamikai un formas histerézei
rotgjosa lauka, dazas inversas problémas siltuma parnesei, specialas
lokalas un globalas aproksimacijas metodes, dazi aspekti degSanas
procesa modeléSanai;

3) matematiskais modelis lineariem un nelineariem hiperboliska tipa PVD;

4) matematiskais modelis 1-D hiperboliska siltuma vadiSanas (HSV)
vienadojumam inverso un tieSo problému risinaSanai;

5) matematiskais modelis un KVM ar hiperboliska veida integraliem
splainiem 3-D (HSV) vienadojuma problémas risinasanai;

6) lineari un nelineari siltuma pareses vienadojumi un paraboliska tipa
vienadojumu sistéma ar periodiskiem RN;

7) problémas Puasona vienadojumam un vienadojumiem ar konvekciju —
periodiskie RN;

8) difuzijas vienadojums ar dalveida konstantiem koeficientiem daudzslanu
apgabala. 3-D problémas redukcija par 2-D jaukta veida problémam;



9) matematiskais modelis dazadas koordinatu sistémas. 1-D nepartrauktas un
diskrétas problémas analitiskie risinajumi Puasona vienadojumiem;

10) KVM ar integraliem splainiem vienkarSiem inZeniertchniskiem
aprekiniem,;

11) dazi elektromagnétiska lauka un speka lietojumi, uzspiestas un brivas 2-D
magnétiskas hidrodinamikas (MHD) konvekcijas plismas ap periodiski
izvietotiem cilindriem;

12) skaitliskie aprékini plismu laukam, ko izraisa virpulu kéde, aplveida
virpulu Iinijas, spiralveida virpuli cilindra un konusa.
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Chapter 1

Spectral represention of the matrix: H. Kalis,
2011 [74]

The linear problems of mathematical physics can be approximated
with the linear system of algebraical equations in following form

Au=f, (1.1)

where A,u, f are correponding the quadratic matrix and column-
vectors of M order.

1.1 The algebraical spectral problems

The spectral problems for matrix A we can represented in the form

Awf = 4wk, AWk = 4wk k=T, M, (1.2)

where wk, w’i are eigenvectors with the elements w’]‘., w’; It j=1,M, A,

is the conjugate ( transposed) matrix of A, A; is the eigenvalues.
This problems can be writte in the matrixes form

where W, W, are the corresponding matrices of eigenvectors in the
column with the elements w’]‘.,wk j=1.Mk=1,M,D = diag(}),

: . XD :
k =T, M is the diagonal matrix with the eigenvalues.
We can normed the eigenvectors and obtain the system of the

biorthonormed eigenvectors

wk, w in the scalar product (w*, W) =¥, ji/ll w’;wm# = O mfork,m =
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1,M, where 0y, is the Kroneker’s symbol.

For different eigenvalues the eigenvectors are orthogonal (0 = (W, Aw*) —
(W AWE) = (A = ) (wie, w').)

1.2 The solution of the algebraical problem

For solving the system of equations (1.1) the column-vector f is rep-
resented in the form

M
=Y Bk, (1.4)
k=1

where B = (f,wX),k=1,M.
Usind the spectral problem the solution of (1.1) we can obtain in the
form

M
U= Z oWk, (1.5)
k=1

and (WX, Au) = YM_ | 04 A (WK W) = iy,
(Wli,f) = Ir‘n/[:IﬁVn<wli?Wm) = ﬁkak: 17M
Therefore oy = %,k = 1,M and the solution of the (1.1) is

f Be &
U= —w". (1.6)
=1 M

For the symetrical matrixes A = A, follows that W = W, and we obtain
the orthornormed system of eigenvectors w¥, (W, w™) = & .

From (1.3) follows that

A=wDw ' A, =w.pw ' wwl =Ew ' =w! w '=wT,
(1.7)
where W W] are the transposed matrixes, E is the unit matrix.
For the symmetric matrix A the matrix W is also symmetric and
WW = E,A = WDW.
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1.3 The self-conjugate finite difference operator with first kind
BC

We consider uniform grid in the space x; = jh, j = O,N,Nh=L.
Using the finite differences of second order approximation for second
order respect to x (—u” (x)) we obtain the 3-diagonal matrix A of M =
N — 1 order. Then the expression Ay can be represented with following
way

Ayj=—(yjs1 =2 +y;-)/W, j=TN-1,  (18)
where
yis the column-vector of N — 1 order with elements y;, j=1,N —1,yp =
yn =0.
Using two vectors y', y? scalar product
', y?] = h(ZY - ! y}y?) can prove, that the operator A is symmetri-
cal and [Ay,y] > 0 [3]. The corresponding discrete spectral problem
AwK = ww* k= 1,N — 1 have following solution

W = 73 4 sin? ’2‘]’\’, (elements of the matrix D), w; j_\/7 sin 75\’/ L, j=1,N—1

(elements of the symmetrical matrix W).
Every vector g of M order with the elements g;, j = 1,M we can be
expanded in the basis of eigenvectors

M M

nkj . Tkj

=Y awkg=Y asin =L, a= (g )=+ zg,sm—
k=1 k=1

The solutions of the finite difference equations
—Awj=—(Wjp1 —2wj+w;_1)/h* =uw;, j=1,N—1

can obtain in the classical form

1— % =cos(ph)or u = % sin’ I’Th Then w; = Csin(px;)+Bcos(px;)
and the constants C,B = 0 are determined from the boundary con-
ditions by wg = 0,wy = 0. The values py,k = 1,N —1 we obtain
from the condition C # 0,sin(piL) = 0, py = kT”,k =1,N—1. We
can proved the orthogonality [w*,w"] = 0,k # m in following way
(wo=wn =0):

[Awkvwm] +.uk[wkawm] =0, [Awmvwk] +.uk[wm7wk] =0,

where

[AWk»Wm] hhz ij 11((Wk—wlj 1)—(W]j'+1 _lec"))w?) =



4 1 Spectral represention of the matrix: H. Kalis, 2011 [74]

h N
_h_2( j:l(W];_W];—l) (i s:l(Wf—Wf—l)WT—l):
h
0 ) =

[Aw™ wK], (g — ) WK, W] = 0(s = j+1).
Similarly Cf /h = [w*,wk]/h = £ sin®(0.504j) = (N = S),

N
q, —1

where S; = ):]}]:1 cos(ayj) = Re( ]}[:1 qi) = Re(
2 g = explio),i = v/—1

We get w’]‘. = Cy sin(prx;) and from [wX, w¥] = 1 follows that C = \/% .
Using the usual scalar product of two vectors for eigenvectors without
the step i (W, w™) = ZIJY:_II w’]‘.wT = Om

we get Cy, = \/Z;h = \/%, and WW = E,W~! =W,A = WDW, where
D = diag ().

Example 1.1. The solution of discrete boundary value problem

_<yj+1 _2yj+yj*1)/h2 :f<'xj)7y0 =JN :O7 ]: 1aM7M:N_ 17
(1.9)

or of the finite difference scheme with second order of approxima-

tion the boundary value problem of differential equation (1-D Poisson

equation) —u” (x) = f(x),u(0) = u(L) =0,

we can write in following form

& k I k
yj= Zakwjvy: Zakw ’
k=1 k=1

or
N—1 - M .

. kmj by 2 . kmj

yi= apsin— ap = —.,bpy=—) f(x;)sin—-,

where o = %,ﬁ = (kaf) = leyz_ll W];'f(xj)'

The solution of the spectral problem for the corresponding differential
problem —w” (x) = Aw(x),w(0) = w(L) = 0 is in following form:

L

2 . km krm m m

wk(x):\/;sme,),k:(f)z,(wk,w )*:/wk(x)w (X)dx = .
0
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For the discrete problem the integral in the scalar product (wk, w™), is
approximated with the trapezoidal formula a(wk, w™).

We can constructed the FDSES when in the representation A = WDW
the diagonal elements of matrix D are replaced with the eigenvalues
A from the differential problem. Then the matrix A is not in the 3-
diagonal form but this is full matrix.

Used for analytical solution for the discrete problem Ay = f the trans-
formation v = Wy we have Dv =W f or v; = %224: | Wik fk, where
M =N —1, f = f(xx),vi,i = 1,M are the components of the column-
vector v. Theny=Wvory; =YY w; v, j=1,M.1f d; = p;,i = 1,M
then we have the above-mentioned solution of FDS, but for d; = A; we
obtain the solution of FDSES.

Example 1.2. The solution of the differential problem for
f(x)=sin(xm/L)isu(x) = (£)*f(x),y; = (2/hsin(0.57h/L)) 2 f(x;),
j=0,N. The calculations with MATLAB by FDS (L = 10) give fol-
lowing results for maximal error:

0.5376 ( N=5), 0.1873 (N=10), 0.06596 (N=20). The FDSES give
exact results (the error is 10~13). If f(x) = sin(xw/L) +x/L(1 —x/L),
then u(x) = (£)?sin(xx/L) — % + % + %% and we have following
results for the errors:

1)FDS: 0.6735 (N=5), 0.2353 (N=10), 0.1278 (N=15), 0.0593 (N=25),
0.0293 (N=40),

2)FDSES: 0.00289(N=5), 0.00026(N=10), 0.00006 (N=15),0.00001
(N=25), 2.107% (N=40).

We have ollowing MATLAB m.file ”PDS1veid” :
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1 %$ODE -U''=f U(0)=0, U(L)=0

2 %Analyt.sol., spectral probl.

3 % Au=laml”2 *u,A=1/h"2(u_j+1-2u_j +u_j-1) ;discrete probl.
4 % 2 example:f (x)=sin(x pi/L),U(x)=(L/pi) "2 sin(x pi/L);
5 function PDSlveid (N)

6 N1=N+1;N2=N-1; L=10;x=linspace(0,L,N1)';x=x(2:N);h=L/N;
7 Bl=zeros (N2,N2);

s Bl=Bl+2xdiag(ones(N2,1))-diag(ones(N2-1,1),-1)-.

9 diag(ones(N2-1,1),1);

10 B1l=B1/(h"2); %3-diag. matrix

1 %F=sin (x+pi/L);

12 %$prec=(L/pi) "2xF;

13 F=sin(x*pi/L)+x/L.* (1-x/L);

14 prec=(L/pi) "2*sin (x*pi/L)-x."3/(6xL)+ x."4/(12%L"2)+Lxx/12;
5 u=Bl / F;$ \% slesh \\

16 lk=4/(h"2)*(sin(0.5% (1:N2) '+*h*pi/L))."2;

17 CKl=sqrt (2xh/L);

1s 1lkO=((1l:N2) '#pi/L)."2;

19 W=sin(pix (1:N2) '*x'/L)"';

0 for j=1:N2

20 W(:,3j)=W(:,]J).*CKl;end;

2 SW'xW,A2=Wxdiag (lk)*W' % control

3 %U=Wxdiag(lk.” (-1)) *W'*F; $%FDS

24 U=Wxdiag(1lk0." (-1)) *W'=*F; S%FDSES

5 %[V1,Dl]=eig(Bl); lkk=diag(D1l); [1k,1kk,1k0] % control

2% figure,plot (x,prec, 'k*',x,u, 'ko',x,U, 'bx")

27 legend('prec. atr.', 'Matlab atr.',6K 'FDS or FDSES')

3 title(sprintf('Solution on x,N= %3.0f',N))

29 kMat=abs (u-prec); kU=abs (U-prec) ;norm(kU)

3 figure,plot (x,kMat, 'k*',x,kU, 'bx")

31 legend('kMatlab atr.', 'kFDS')

2 title(sprintf('Err-Sol.on x,N=%2.0f,kM=%6.5f, kFDS=%6.5f", .
33 N, norm(kMat) ,norm(kU)))

The results are represented with the operator ”PDS1veid(10)”.

We have the solution of the differential problem in the form
u(x) =7 fo(L=&)f(§)dE — [5(x—&)f(§)dE.
Using the expression g(x) = Y5 axw(x) = X5, ¢ sin % Jap = (g, wh),
k= % fOL sin ’%Cdx, we can the solution write in the form

> > kmx b b
k . k k k
p— p— — —_— — —_— — b p—
u(x) kz,]akw (x) k21CkSIH L% = 00k = 0 (f,w"),

by = 2[5 £(x) sin % .
If f(x) = Zszﬂk sin”Tkx,K < M, (ay are constant coefficients) then
FDSES method at least with M summands are exact methods, but FDS

is the method of the second order approximation. In this case the exact
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solution is u(x) = YX_| Z—i sin 28

By K = 1,L = 10 the calculations with FDS using MATLAB give
preliminary results.

1.4 The non-conjugate finite difference operator with first kind
BC

We consider following boundary value problem
U’ (x) +au' (x) = — f(x),u(0) = u(L) =0, (1.10)

where a is constant parameter. The analitycal solution is

u(x) = LS [ exp(—a(L—1) — 1) f(0)di+
Jo (exp(—a(x—t)) — 1) f(¢)dt]. In this case we have corresponding A.

Iljin FDS (M =N —1)

Ay = —(nyi—Fa)’x) = f()C),y(O) :y(L) = O,X =Xj= ]ha .] = 13M7
(1.11)

where yxz,j = (vj1 =2 +yj-1)/1%, yij = (vj1 —yj-1)/ (2h)

are central finite difference expressions, 7 is the grid parameter. For

the monotonous approximation ¥ = a.coth(o) ( A. Iljin FDS),

y= ||+ (1+ |e|)~' ( A.Samarsky FDS),

y = |o| + 1 (upwind FDS), where o@ = 0.5ah. For the central FDS

y=1.

The corresponding spectral problem is Aw = uw or in the index form

(WO = WN = 0)

(Y4 @)wj1 =2y = 0.5uh)wj+ (Y= at)wj—y =0,/ = T,M.
For solving this difference equation we use the transformation
w; = K’/z;. Then we have

Zjy1 —2cos(ph)zj+2z;-1=0,20 =23y =0,j = 1,M,

where

K= (T75)">, cos(ph) = (y—0.5uh?) /\/y* — a2,

Similarly (section 1.3) we obtain z’; = Cysin(pgx;),

w’]‘. = Cyk/ sin(px;), px = kT”,k = 1,M and the eigenvalues are
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2 krmh S
_ 22 _
uk_hz(y Y —aicos— ), k=1,M. (1.12)

The solution of the conjugate spectral problem (the parameter a is
replaced with —a) is in the form

W];’j:C;:K'_jSin(kaj), k,j=1M.

Determine the constants Ci, C;' from the biorthonormed condition

(WK, w™) = .y we get C = Cf = \/% and

2 . kmx; 2 . kmx; S S
wk(xj):\/NK]sin ij,w’i(xj):\/ﬁlc_fsin Lx],jzo,N,k:I,M.

(1.13)
If y = acoth(a) (A. Iljin FDS), then k = exp(—a) and on the grid
points x; the eigenfunctions (1.13) are coincided with the eigenfunc-
tions of the corresponding differential problems
w' (x) +aw'(x) + Aw(x) = 0,wy(x) — aw!, (x) + Aw,(x) =0,
w(0) =w(L) =0,w.(0) =w,(L)=0:

2 k 2 kmx
wh(x) = \/;exp(—O.Sax) sin %,wﬁ(x) = \/;exp(O.Sax) sin Lx],

(1.14)
but the eigenvalues are different (4, = (22)2 +(%)2),k=1,2,....
This eigenfunctions are biorthonormed in the scalar product (wX, wk), =
JE W WA ().
If y =1 (the central FDS), then we have real solution only by the
condition |a| < 1 orh < %

Example 1.3. The solution of discrete boundary value problem (1.11)
or of the FDS with second order of approximation for boundary value
problem (1.10) we can write in following form

u k
yj = Z 6ij,
k=1

where & = %,ﬁk =Wk, f) = 1]"/1:1W];7jf(xj)'

For the FDSES by 7 = a coth(a) in the representation A = W DW, the
diagonal elements of matrix D are replaced with the eigenvalues A.
Then for the solution of the problem Ay = f we can used the transfor-
mation v = W, y. Then Dv =W, f or v; = dliZkM:I w§7ifk andy=Wvor
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yj= Zﬁ.‘ilw;vi,j =1,M. If d; = n;,i = 1,M then we have the above-

mentioned solution of FDS, but for d; = A; we obtain the solution of

FDSES.

Example 1.4. The solution of the problem (1.10) for
f(x) = exp(—ax) (4 cos(xm /L) + (%)2 sin(xm/L))
is u(x) = exp(—ax)sin(xm/L).

The calculations with MATLAB for different methods by L=1,a =35

give following results for maximal error:
1) FDS upwind and FDSES:

0.0424; 0.0225(N=10), 0.0329; 0.0156(N=20), 0.0245;0.0110(N=40),

2) Iljyn FDS and FDSES:

0.00166; 0.01040(N=10), 0.0006; 0.0041(N=20), 0.0002; 0.0015 (N=40),

3) Samarsky FDS and FDSES:
0.0046;0.0115(N=10), 0.002;0.005(N=20), 0.0008;0.0017(N=40),
4) Central FDS and FDSES:

0.0062;0.0099(N=10), 0.0022;0.0040(N=20), 0.0008;0.0009(N=40).

The MATLAB m.file ”PDS2veid” :

| %ODE -U''—a U'=f U(0)=0, U(1)=0

2 %Analyt.sol., Exact Iljin FDS, spectral probl.,FDSES
3 function PDS2veid (N)

4 N1=N+1;N2=N-1; L=1;a=10;x=linspace(0,L,N1)"';

5 x=x(2:N);h=L/N;al=axh/2;

6 %g=alxcoth(al);% Iljina FDS

7 g=1; % centr. dif.

8 %$g=1l+abs(al);% upwind

9 %g=1+al”2/(l+abs(al));% Samarskij FDS

10 Bl=zeros (N2,N2);

11 Bl=Bl+2xgxdiag(ones(N2,1))-(g—-al)*diag(ones (N2-1,1),-1)-. . .

2 g+al)xdiag(ones (N2-1,1),1);

3 Bl=Bl/(h"2);% 3-diag. matr.$

14 F=exp (—a*x) .* (a*pi/Lxcos (pi*x/L)+ (pi/L) "2*sin(pi*x/L));
I5 prec=exp (—a*x) .*sin(pixx/L);

16 u=Bl\F;

17 1kO0=(pi/L*[1:N2]')."2+a"2/4;

15 1k=2/ (h"2) * (g-sqrt (g~ 2-al"2) +cos ([1:N2] '*pi*h/L));

19y CKl=sqrt (2xh/L);gl=(g-al)/(g+al);

0 W=(sin(pi/L*[1:N2]'*x').*(ones(N2,1)*(gl.” (0.5%*x/h))"'))";
21 Wl=(sin(pi/L*[1:N2]'*x').*(ones(N2,1)x(gl.”(-0.5*x/h))"'))"';
» for j=1:N2

23 W1l(:,3)=W1l(:,J).*CK1l;

% W(:,j)=W(:,]J).*CKl;end;

25 SW'xW1l,A2=Wlxdiag(lk)*W' % control

26 %U=Wxdiag(lk.” (-1)) *W1l'*F; $FDS
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27 U=Wxdiag (1lk0." (-1)) *W1l'xF; S%FDSES

% %$[V1,Dl]=eig(B1l);1lkk=diag(D1); [1k, 1kk, 1k0] % control

2 figure,plot (x,prec, 'k*',x,u, 'ko’',x,U, 'r0'")

3 legend('exact sol.', 'Matlab sol.', 'FDS or FDSES')

31 title(sprintf('Solution on x,N= %$3.0f',N))

» kMat=abs (u-prec) ; kU=abs (U-prec) ; norm(kMat) , norm (kU)

33 figure,plot (x,kMat, "'k*', x,kU)

3 legend('Matlab err.', 'FDS or FDSES err.')

35 title(sprintf ('Error Sol.on x,N=\%2.0f,kM=\%6.5f, kU=%6.5f',.
3 N, norm(kMat),norm(kU)))

The results can be represented operator ’PDS2veid(20)” by a =
5,N =40.

1.5 The finite difference operator with periodical BCs

We consider following boundary value problem with periodical con-
ditions

—u"(x) = f(x),x € (0,L),u(0) = u(L),u’(0) =u'(L).  (1.15)

This problem has unique solutions by [ f(x)dx = 0,u(xo) = uo,
where xq € [0, L], ug are fixed constant.
The analytical solution of this problem is

X L

u(x) = /(t—x)f(t)dt— %/Zf(l)dt—f—uo,

0 0

where uy = 0 if xg = 0.

Using the uniform grid and finite differences with the second order of
approximation we obtain the FDS Ay = f with 3-diagonal matrix A of
M = N order in the following form
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where y, f are the column-vectors with following elements y;, f; =
f(xj), 7 =1,N,y0 =Yyn,YN+1 = )1
The matrix A is the circulant matrix and this can determined wth the
firstrowA=[2—-10..00 —1].
The calculations of circulant matrixes
A =lay,ay,...,ay|, B=[b1,bs,...,by],C = [c1,¢2,...,Cp]
and column-vectors
b= (b1,by,....by)T, c = (c1,c2,...,cp)T of the M order
can be carried out using following formulae:
1)Matrix A invertion

1 Ml 27k . 2mkj 7
B=A"" bk_M )3 (O‘JCOS _BJ n J)/(O‘J +Bj) k=1, M,
j=0
where OCjZZ, -0 Clz+1COS iy Bj = Y. o al+1 szj‘r/l#

Here o;,f; are the real and imaginar part of the matrix A eigen-

values. The complex eigenvalues of matrix B are in the form A; =

_ 2
Z?iolb,ﬂ(cos W Iy, sin 200y =

ojtifBp T ot +p7
27'Ek] 27'ij
summed this expression with Z =0 I cos 24L Z =0 lgin 2 , and used

the orthonormed conditions Y 01 cos 2%{] cos 2]75;] =Y 5k i

M—1 21k 2 M
=0 sm%sm% —5ki,
we obtain ¥ by = ZM_Ol Q. cos 2”kj/( [3 ),
M M-1 2mkj

7bk:_2j:0 ﬁ]SIH ]/( +[5 )
2)Matrices A and B multlphcatlon

where i, is the imaginary units. By multiplay and

C=AB,c; = debv k1 Z arbyrys—ky1,5 = 1,M.
k=1 k=s+1

3) Matrix A multiplication with vector b

c=A.b,cs= ZGM s+k+1bk+2ak s+1br, s =1,M.
k=1 k=s

4) Matrix A eigenvalues
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M-1

My = Z aj+1¢k('xj)7 (Pk(x) = exp(2mkx/L),z: \% —1,Xj =jh,j,k=1,M.
j=0

5) Matrix A orthonormed eigenvectors

h 1 _
wh = (Wi, wh, .o wiy) T Wl = \Ecpk(xj) =\| 5 SXP(2ikj/M), j=T,M.

6) Matrix A spectral representation

A =WDW?* where w’;,w’; j» Mk, are the elements of matrices W,W*
and diagonal matrix D of the M-order,

whi =/ srexp(—27ikj/M), j =T,M.

7) Matrix A norm: ||A|| = max || < ij‘-”:l la;l.

This algorithm can be easily realized by MATLAB.

We have following MATLAB m.files

1)B=Cikl(A) for matrix A invertion:

function B=Cikl (A)

% A,B=vectors—-rows, circular matrix A invertion,B=inv (A)
M=length (A) ;M1=M-1; h=2%pi/M;P1l=h* ([0:M1] '*[0:M1]);
CS=cos (P1l) ;A1l=CS*A'; SN=sin (P1l) ; A2=SN*A';
A3=Al."2+4A2."2;AJ=Al./A3; BJ=A2./A3;

B= (CS*AJ-SNxBJ) ' /M;

= Y S IO R S

2) C=CMR(A,B) for two matrices multiplication:

function C=CMR (A, B)
% A,B,C —-vectors— rows, two matrices A un B multiplication
M=length (B) ;C (M)=AxB(M: (-1) :1) ';
for s=1:M-1
C(s)=A(l:s)*B(s:(-1):1) '"+A(s+1:M)*B(M: (-1) :s+1) ';
end

o w A W o =

3) e=CMRV(A,b) for matrix A multiplication with vector b:

function c=CMRV (A, Db)

% A,b -vectors— rows and column, circular matrix A

% multiplication with vector b, c=Axb- column-vector

M=length (a) ;cl (1) =Axb;

for s=2:M
cl(s)=A(M-s+2:M)*b(l:s-1)+A(1:M-s+1) *xb(s:M);

end

c=cl’';

© w9 o v AW o —




1.5 The finite difference operator with periodical BCs 13

The corresponding spectral problem is Aw = uw or in the index
form

wit1 —2(1 —O.S,uhz)wﬂrwj,l =0,j=1,N,wp = wy, w41 = wi.

From the properties of the circulant matrices follows that
My = %(Sln(kﬂ/N)za W]; = Ckexp(ka]/N),k,] =L,N,

where the constants C; can be determined from the scalar product
k N k. m
(w =

W) = Lj winll; = Gem,
wl . = Cpexp(—2mimj/N),m,j=T,N.
We obtain that C;, = \/% .

The eigenvalues 1, are symmetrical as regards k = N/2 or Uy J24m =

U j2—m>m = 1,N/2, where N is even number.

k

Using the matrices W, W, with the eigenvectors wk, wX in the matrices

columns we get
AW =WD,WW,=E,W '=W, W' =W, A=WDW, A~ =w.D~'w,

where the elements of the diagonal matrix D is d = .,k = 1, N.
The solution of the FDS Ay = f in the foomy =A=' f = W,D~'W £ it
is not possible because ty = 0,det(A) = 0.

For the differential spectral problem

—w"(x) = Aw(x),x € (0,L),w(0) =w(L),w'(0) =w'(L)

we obtain 2 = (27k/L)2,w(x) = \/+ exp(2mike/L),
WA () =/ Fexp(~2mikn/L) = wk(2),

(WE, W) = [wK (X)W (x)dx = 8y, kym = —o0, Foo.

The solution of (1.15) with the Fourier method can be obtained in fol-
lowing form:

fx) = L bk (x), b = (Wh, f), u(x) = L anw(x),ar =
bk / Ak.

For the solution the discrete problem Ay = f we use the transforma-
tion

W,y =vory=Wv. Then Dv=W,f ord;v; = (W.f);,j=1,N.

For j = N we have the expression 0 = Zivzl f(xk) where consist with
the integral condition, xo € [0,L].

The value vy is indeterminable and we can take vy = 0. For j =
I,N—1wehavev; = dij(W*f)j and the solution is in the form y = Wv.
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If d; = A4 then we can obtain the solution of FDSES in following way:
D)dy = X for k = 1,N,, where N, = N /2.
Z)dk ;LN k for k = Nz, No,N—1 dN =0.
For periodical function f(x) follows the complex expression
F) = K bowk () = S (b () +bow ™ (1)) + 22 =
oo b
3 Lt ((brtbr) (w "(X)+W"( )+ (b — b)) (W (x) —wi(x))) + & =
X1 (ke 008 225 by sin 265) 4y — (k).
where

bie = 7 (bi+bi) = ﬁfoLf(X)(Wi(ﬂ +wh(x))dx) =
%fOLf( )cossztdt
bis = r(bx—bi) = 77 Jo f(x) (WA (x) —wh(x)dx) =
2 L f(r) sin 22K gy
Therefore the solution of (1.15) we can also in real form:

u(x) = Y- l(akc cos znkx + ay smm) + %,
bk\"

where a;. = 7L ks = 7.

For vector f of N order with component f;,j = 1,N using wk =
W= = =k, w[]y = w? =1,j=1,N we have similarly following
expressions: f = YN byw* ZN2 YW + by W™ F) + by, w2+
bywY = L8020 (i + by—i) (WF +WN7k)

+(bk — by - k)(W —wNE)) by, W+ byw® by = (f ),
or fj = Zk 2 (bye cos =7 2K 4 by sin %) + %,
where
b = f(karbN k) = fZ L (W k) =

k

NZ 1 fjcos 2711\/]’
bks \f(bk bN k) ij 1fj( I;):
NZ lf]smzmcj k=1,N,—1,
bo =bn = WZI 1 Jisboc = bne = \/Lﬁboy
by,e = \/Lﬁsz NZ ICOS<]7T)
by, Wy, w2 = ]%]ZN Lcos(jm)cos(km),Ny = %’,szs =0,
Z*Nz N2 ! | B+ ﬁ’;/ 2 for periodic functions by = by = 0.
This dlscrete Fourler expression we can representation in the

following form [19]'

j bnye i )
fi=YN (bkccos Ko+ by sm27]t\;”)+ 2 C;S(M)—i—l%.
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Similarly the solution of the discrete problem can be represented in
the
following form: y; = Zk 2 (e cos 22K 1 g, sin 2%") + %,
where ay. = %,aks = lf‘,aoc O.
This solution we can obtained also from the orthonormed trigonomet-
rical functions. Using the relations [19]

L sin(ax;) = O SO
ZN ICOS(axj) o sm(O.Sagﬁl—(kgz)s)ac;)s(O.SaL) 1

we obtain Z ", singcos; =0 ): ", sing sing = ):]}':1 cosg cosg = Np Oy .

N _sing = ZZJV (cosy = 0, where sing,cos; are N-order column-

271:k Jj

Vectors with the elements sin 2%‘] cos X k.s=1,N»,L = Nh.

We have the relatlon
2 =M T (B ).
From Ay = Z*N2 (akCA cosy, +aysAsing )+
aOCA cosg and A cosy = U COSg, A sing = [ Sing
f0110WS el = Die ags e = Dys-
If in the discrete Fourier expression
fJM =YiM (b cos N’ + by sin 2”’”) + e boe p< N,
then using the least -squares method we can proved, that the Fourier
coefficients by, bys, k = 1, M maintain own form and we can estimate
the error
S (= P =5 2= Mo+ T (B2 + 1),
Compared the dlscrete Fourler coefficients By, B w1th to Fourier se-
ries coefficients by, bi; we have [19]
By = bOc"‘ZZ:l Nm)c»Bkc bkc""zm 1( (N(m—k))c +b(N(m+k))c)a
Bis = brg+ Yo 1 (=D(n(m—i))s + DN (m+k))s) -
For f(x) € C¥(0,L) the coefficients decrease as k~ (Y1), We can ob-
tain the solution of FDSES by replasing the discrete eigenvalues
with the first N eigenvalues A,k = 1,N.

Example 1.5. The solution of the problem (1.15) for f(x) =x—0.5,L=
1is u(x) = —(2x — 3x2 +x)/12,up = 0.

The calculations with MATLAB by FDS give following results for
maximal error: 0.0086 ( N=6), 0.0062 (N=10), 0.0042 (N=20).

The FDSES give 0.0077 ( N=6), 0.0058 (N=10), 0.0041 (N=20).
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The MATLAB m.file ”PDSper” :

%$ODE -U''=f with periodicalU(0)=U(L), U'(0)=U' (L)
%Analyt.sol., spectral probl. -v''=lam"2 v
%$Au=laml”2 *u,A={-1/h"2(u_j+1-2u_j +u_j-1) ;discrete probl.
% example:f (x)=x-0.5,L=1,U(x)=-(2x"3-3x"2 +x)/12;
function PDSper (N)% N-even

N1=N+1;N2=N-1; NH=N/2;NH1=NH+1;
L=1;x=linspace(0,L,N1) ';x=x(2:N1) ; h=L/N;

Bl=zeros (N,N);
Bl=Bl+2xdiag(ones (N, 1) )-diag(ones(N2,1),-1).

10 —diag(ones(N2,1),1);

n Bl1(1,N)=-1; B1(N,1)=-1;

2 Bl=Bl/(h"2);%3-diag. matrix

13 F=x-0.5;V=zeros (N, 1l);d=zeros(N,1);

14 prec=-(2*x."3 -3%x.72 +x)/12;

15 u=Bl\F;

16 lk=4/(h"2)*(sin((1:N) '*h*pi/L))."2;

17 Ck=sqrt (h/L);

18 1k0=(2% (1:N) '*pi/L)."2;

19 %d=1k; $%FDS

20 d(1:NH)=1kO0 (1:NH);

21 d(NH:N2)=1kO(NH:-1:1); $FDSES

2 W=Ckxexp (2*pixi* (1:N)'*x'/L)"';

23 Wl=Ck*exp (-2*pixix (1:N)'*x'/L)"';

24 V(1:N2)=W1(1l:N2,:)*F(:)./d(1:N2);

25 U=WxV;ui=imag (max (abs (U)));

26 S$W1xW,A2=Wxdiag (lk)*W1l% control

27 figure,plot (x,prec, 'k*',x,U, 'bx")

2 legend('prec. atr.', 'FDS or FDSES')

29 title(sprintf('Solution on x,N=%3.0f, imag=%e',N,ui))
3 kMat=abs (u-prec); kU=abs (U-prec) ;norm(kU)

31 figure,plot (x,kU, 'bx"')

%2 legend('FDS or FDSES')

33 title(sprintf('Error Sol.on x,N=%2.0f,kM=%6.5f, .
xu kFDS=%6.5f',N,norm(kMat) , norm(kU)))

© X w e v A W R -

The results can be represented weith the operator ”PDSper(40)”.

The solution of the problem (1.15) for f(x) = —fycos(2nx),L =
1,u=0, fo = const is u(x) = 4%(2 —cos(27x).
This solution we can also obtained with Fourier method:
bis = 0,b1c = fo,bke =0(k # 1), a1 = {—?,ll = 41, u(0) = 0.
For FDS using discrete Fourier method in similar way:
e =12,y = % (sin(w/N)?yo = 0.
This solution we can obtain directly solved the difference equation:
Yjt1 =2y +yj1 =R focos(2mx;), j = T,N,yo = yn,yn+1 = 1.
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foh?
4sin’(rh)
where Cl,Cz are unknown constants. From yg = yy = 0 follows

_ _ fok?
C1_4sn( )C2 0.

The maximal error is 2|fo(u; - Al ! and for FDSES by replacing
in the matrix equation WDW,y = f the elements L of the diagonal
matrix D with A;,k = 1, N we obtain the exact solution and the error
is equal to zero (similar Fourier method).

Easy we can solved also the following nonlinear problem — (v#)” (x) =
f(x),x € (0,L),v(0) = v(L),v'(0) =V'(L), using the transformation
u=vByv=u/B g >1.

The solution is in the form y; = Ci + Coxj — cos(2mx;),

1.6 The higher order FDS by periodical BCs

In this section we consider the finite difference approximation for
derivatives u’(x;), —u" (x;), —u" (x;),u"” (x;) using the uniform grid
xj= jh, j = 0,N with multi points stencil.

1.6.1 Derivative of second order

We consider the finite difference approximation for second order
derivative —u” (x;) using the uniform grid x; = jh with 2n+ 1 points
stencil (xj_p,---,Xj—1,Xj,Xj+1,"**,Xj—n). Used the method of un-
known coefficients Cy, E, we consider the approximation of the O(h*")
order in following form:

1 h2nu(2n+2)
u"(x;) = el Z Cru(xj—x) + Eoy (&)

W,Xj_n < 5 <.xj+n
k=—n :

X7XJ‘

With the transformation ¢ = =~ , u(x) = u(x; +th) = i(t),

W (x) = il (0), ) = L)

we obtain

2n+2 _
,—n<é&<n.

)(E)
k_znc"” )+ Byt
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Using properties of symmetry C,, = C_,, and the power functions
i(t) =1",m=0,2n+ 1 we get the systems of linear algebraic equa-
tions for determined the coefficients C,,. For m = 0 follows the equa-
tion Co = —2Y" | Cy,. For the others coefficients (m > 0) we get the
system of linear algebraic system Vc=eor };_, Cik*" = m,1,M =
1 ) n?

where e = (1,0,---,0)7 is the unit column-vector, ¢c = (Cy,Ca, - ,Cp)T
and V is the matrix Vandermonde of the n order tn following form:

1222 3 . (n-1? n?

14 24 3 L =1 ()
v=| . . . .

12n72 22n72 32n72 (I’l— 1)2n72 (n)anl

12n 22}1 32n (n_l)Zn (n)Zn

If m = 2n+ 2 then we obtain
Eyp = —=2(C1+2"P2Cy 4+ (n)*"12C,) = —2X08_ | Cum®"+2.
The matrix B is the inverse of the Vandermonde matrix
with the elements b; (V! =B,c=B"'e). ThenC; =b,,j = 1,n.
We consider the polynomial of the (n— 1)-order P} (x) =X, bj !
and polynomial of n order sz (x) = P} (x)x=Xr_, bjix* and Rj(x) =
J?P} (x) [24]. From BV = E follows that P}(k*) = Y./ bj k> = &
and P} (k%) =1/ 28 j,R;(k*) = &_j.k, j = T,n. Then the polynomial
Rj(x) is the Lagrange characteristic polynomials in following form
Ri(x) =TT 5 and €; = by = 1/2R;(0) = £ TTL 1) 725
[21]. Therefore

2P

C, =
" m2(n—m)!(n+m)!’

Therefore we have following coefficients:
1)n:1:C1:1,C0:—2E2 2

Dn=2:C=%,C=— 12,00 E4==38,
(=3:C1=3,C,= 20,C3 go,co_ 18,1«:4_ ~72,
4)n:6:C1:%7C2—_ ,C3 = 3157C4— 5607C = 270257
Eg=1152.

In this case the circulant finite difference matrix A approximed the
second order derivative —u" (x;) is in the form
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1
A= —ﬁ[CO,Cl,"‘ 7Cn707"’ 707Cnacn—17"' 7C27C1]'

The eigenvalues of matrix A are L = —h%zz;(l) Cnexp(2mim/N)=
—hlz(Co +2Y" _,Cpcos 2’5\’,"") or

4 & —
=1 Y. Cpsin®(mkm/N),k=T,N.
m=1

For obtaining the unknown coefficients Q,, in the relation
W = };iz Y™ _ Qumsin®(zk/N) undepending on n we use

the followmg expresswns for sinus function (a = %‘) :

sin?(2a) = 4sin®(a) — 4sin*(a);sin?(3a) = 9sin®(a) — 24sin*(a) +
16sin%(a);

sin’(4a) = 16sin? (a) 80sin* ( )+ 1285in®(a) — 64sin%(a);
sin’(5a) = 25sin*(a ) 200sin*(a)+

5605in®(a) — 640sin®(a) +256sin'°(a);

sin’(ma) = m?sin®(a) + ... + Dy, sin®"(a),

where D,,, = (—4)’"*1 m > 0. The for m = n by Q,, = D,,C,, we obtain

y 2 4m—1
0, = 2(n222i) . We can assume that Q,, = %

The strong prove can be jused the m-th degree of Spread polynomial
S (s) = sin®(ma),s = sin*(a), in [20] S. Goh is proved that

for all m = I,_n

Z Cém 1- ;( 4s)" 1= ’—SZ lcnwfﬂl (= —4s)!7,

where [ = m — j. This formula is proved also in [24], using the
Chebyshev polynomials of the first kind cos(marccos(x)) = T, (x) =

My o(—2) it (1 - )k

Then e = 25 Y CuSn(s) = 75 X Cn X1y O,

m I—1)! _
where @, ; = T—(m(—n?)L!(Zl—)l)! (—4)-1,

Using Y YL Oy = Y7 Z?Z:l O, and denoting
Q1 = Y1 CnOn We get ty = 5 Oys'.

l 1! 241 1 2
We need proved that Q; = % From C,, = # [T, Lm (mz—sz)
follows that we need proved the expression

2 m _
Lt T ey s e (=)' = (1= 1)1)?
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2 m—+v)! v
or Yoyt (HZ:1¢m (kzlimZ) )% (rr(zf—\')_f)l')! (=1)

This expresion we can write in following form [20]:

m=v+1 k=12 7y (Lli= 1(k2—m ) = (v1)* or

e v+1<Hk o T ) (T S2) = 17241
Then = 5 Lyn Qm s1n2m(7rk/N ).

Wehave Q1 = 1,0, = 1,03 = 5,04 = 55, - o
For FDSES we can replace the discrete eigenvalues d; = Ui,k =1,N

with the continues values A4; = (2”") in following way:
dy = Ak =1,N/2,diynjo = Ayja—k—1,k = 1,N/2,dy = 0 (see Figs.
1.1, 1.2).

Example 1.6. We added following operators by the MATLAB m.file
”PDSper”’

= (v!)?, wherev=1-1.

NT=(1:N)'/L;

1lk=4/h"2* (sin (pi*h*NT)) ."2; % 0(h"2)

1k=4/h"2* ((sin (pi*h*NT)) . "2+1/3% (sin (pi*h*NT)) ."4) ;%0 (h"4)
1k=4/h"2% ((sin (pi*h*NT)) . "2+1/3% (sin (pi*h*NT)) . " 4+. . .
8/45% (sin (pi*h%NT)) ."6) ;%0 (h"6)

1k=4/h"2% ((sin (pi*h*NT)) . "2+1/3% (sin (pi*h*NT)) . "4+ . . .
8/45% (sin (pi*h%NT)) . “6+4/35% (sin (pi*h%NT)) ."8) ;%0 (h"8)

e Y N ST TCRY R,

we can by N = 6 with the operator ”’PDSper(6)” for FDS obtain
the following maximal errors:
0.00857(0(h?)),0.00786(0(h*)),0.00775(0(h%)),0.00772(0O(h?)),
0.00767(for FDSES).

Example 1.7. The solution of the problem (1.15) for f(x) =x—0.5L
is u(x) = —(2x° = 3Lx% +xL? — 12up) /12,up = 1.

The calculations with MATLAB by L = 10,N = 100 for FDS give
following results for maximal error:
0.6250(0(h?)),0.6214(0(h*)),0.6207(0(h®)),0.6205(0(h3)).

The FDSES give 0.6199.

The exact solution of the problem with f(x) = cos(2mx/L)exp(sin(27x/L))
can be obtained use the Matlab operator “quad”

(see the Matlab listing). The calculations with MATLAB by L =
10, N = 10 for FDS give following maximal error:
0.2097(0(h?)),0.0131(0(h*)),0.0049(0(h)),0.0023(O(h?)), but for
FDSES, 3.2107.
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If f(x) = cos(2Pmx/L)exp(sin(2Pmx/L)) then we obtain following
results:
)P =2,N=10:0.22(0(h?)),0.052(0(h*)),0.049(0(h%)),
0.045(0(h?)),0.034(FDSES),
2) P=3,N =20:0.054(0(h?)),0.0087(0(h*)),0.0047(0(h®)),
0.0034(0(h8)),0.0()1l(FDSES)
3)1) P=3,N—40:0. 013( (h?)),6.10~4(0(h*)),10~*(O(h®)),
4.107>(0(h?)),6.410~ (FDSES),
4)1) P =4,N—40:0. 013( (h?)),8.107*(0(h*)),3.10~*(0(K)),
1.51074(0(h?)),2.10~ (FDSES)
(h
S

5)1)P:4,N—100:00021( 2)),3.1072(0(h*)),2.107%(0(h%)),
2.1077(0(n?)),1.510~8(FDSES).

Matlab listing:

gg=Q@(t) cos(2xpi*t/L).*exp(sin(2xpi*t/L));
ggl=@ (t)t.*cos (2*xpi*t/L) . xexp (sin (2xpix*t/L));
pre=quad(ggl,0,L,1.e-10);

for j=1:N

prec(j)= -x(j)*quad(gg,0,x(j),1.e-10)+. . .
quad(ggl,0,x(j),1l.e-10) -x(j)/L*pre;

end

F=cos (2+pi*x/L) . *exp (sin (2*xpi*x/L));

®w w9 o wm B W o —

The following MATLAB m.file ”PDSper1” is used:

1 $ODE -U''=f(x) with periodicalU(0)=U(L), U'(0)=U'(L),U(L)=U0
2 % example:f (x)=x-0.5L,U(x)=-(2x"3-3L x"2 +L"2 x-12 U0) /12;
3 function PDSperl (N)% N-even

4+ N1=N+1;N2=N-1; NH=N/2;NH1=NH+1;U0=1; L=10;

s x=linspace(0,L,N1)';x=x(2:N1);h=L/N;

¢ Bl=zeros (N,N);V=zeros(N, 1) ;d=zeros(N,1);

7 VV=zeros (N, 1l);dd=zeros(N,1);

s U=zeros(N,1l); UU=zeros(N,1l);

9 %$B1l=Bl+...

10 %2xdiag(ones(N,1l))-diag(ones(N2,1),-1)-diag(ones(N2,1),1);
n %$B1(1,N)=-1; B1(N,1)=-1;

2 %$B1=Bl/(h"2);%3-diag. matrix for O(h"2)

13 F=x-0.5%L;

14 prec=-(2%x."3 —3xLxx. 2 +x*L"2-12xU0)/12;

15 %$u=Bl\F;

16 NT=(1:N)'/L;

17 1k=4/h"2% (sin (pi*h*NT)) ."2; %2.order FDS

18 %$1k=4/h"2x ((sin(pi*h*NT)) . 2+1/3% (sin (pi*h*NT))."4);%4.oxd.
19 %$1k=4/h"2x% ((sin (pi*h*NT)) . " 2+1/3% (sin (pi*xh*NT)) . 4+

20 %8/45% (sin (pi*h*NT))."6);%6.order FDS
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21 %$1k=4/h"2x ((sin (pi*h*NT)) . 2+1/3* (sin (pixh*NT)) . 4+. ..

2 %8/45% (sin (pi*h*NT)) . " 6+4/35* (sin (pi*h*NT))."8);%8.ord.

3 Ck=sqrt (h/L);

24 1k0=(2% (1:N) '*pi/L)."2;

25 dd=1lk; %FDS

2% d(1:NH)=1kO0 (1:NH);

27 d(NH:N2)=1kO(NH:-1:1); $FDSES

23 W=Ckxexp (2*pixi* (1:N)'*x'/L)"';

29 Wl=Ck*exp (-2*pixix (1:N)'*x'/L)"';

30 V(1l:N2)=W1(1l:N2,:)*xF(:)./d(1:N2);

31 VV(1:N2)=W1(1:N2,:)*F(:)./dd(1:N2);

%  U=WxV;ui=max (abs (imag (U))) ;U=U-U(N, 1) +UO; $FDSES sol.

33 UU=W*VV; uui=max (abs (imag (UU) ) ) ; UU=UU-UU (N, 1) +UO; $FDS sol.
34 SW1xW,A2=Wxdiag(lk) *W1l% control, A2=Bl for O(h"2)

s figure

3 plot (x,prec, 'k*x',x,U, 'bx',x,U0U0, '-', 'LineWidth', 2, '"MarkerSize', 3)
37 legend('prec. atr.', 'FDSES', 'FDS')

33 title(sprintf('Solution on x,N=...

39 %3.0f,imPDS=%6.5d, imDS=%6.5d',N,ui,uui))

4 kUU=abs (UU-prec); kU=abs (U-prec) ;norm(kUU), norm(kU)

41 figure,plot (x,kU, 'bx',x,kUU, '-', 'LineWidth',6 2, 'MarkerSize', 3)
2 legend('FDSES', 'FDS')

4 title(sprintf ('Error N=...

4 %2.0f,nFDSES=%6.5d,nFDS=%6.5d',N, norm(kU) , norm(kUU)))

Example 1.8. The solution of the problem (1.15) for f(x) = sin(2wPx/L),P =
2;4is u(x) = (%)zf(x),u(O) =0.
We have the exact solution for FDSES, if N > 2 x P. The results for

FDS and FDSES of the maximal error we can see in the Tab. 1.1.

Table 1.1 The values of FDS O(h*), k =2:4:6;8,8(FDS), §(FDSES) for diferent values of p, N, L

FDS |[pNL=2,6,1|pNL = 2,6, 10]pNL = 2,6, 100[pNL = 2, 12, 10| pNL = 2, 12, 100] pNL = 4, 16, 10
o(n%) | 0.0025 0.2535 25.39 0.0530 5.299 0.0371
O(h) | 93e—4 0.0931 9.310 0.0067 0.6727 0.0091
O(h%) | 45¢—4 0.0456 4552 0.0011 0.1092 0.0030
o(h®) | 2.5¢—4 0.0251 2513 2.0e—4 0.0196 0.0010
FDSES| 1.1e—17 | 1.7¢—15 1.7¢—13 5.1e—15 3.6e—13 6.4e — 15

We use following MATLAB m.file ”PDSexat”:

1 %ODE -U''=f(x), U(0)=U(L), U'(0)=U'(L),U(L)=UO
2 % example:f(x)=sin(2 pi px/L),U(x)=(L/(2 pi p)) "2 £(x);p=2;4
3 function PDSexat (N)% N-even
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4+ N1=N+1;N2=N-1; NH=N/2;U0=0; L=100;
s x=linspace(0,L,N1)';x=x(2:N1);h=L/N;

¢ V=zeros (N, 1) ;d=zeros(N,1);VV=zeros(N,1l);dd=zeros(N,1);p=2;
7 F=sin (2xpi*p*x/L);

s prec=(L/ (2xp*pi)) "2xF;

9 NT=(1l:N)'/L;

10 1lk=4/h"2x (sin (pi*h*NT))."2; %2.order FDS

11 %1lk=4/h"2x% ((sin (pi*h%NT)) . 2+ ..

12 %$1/3%(sin(pi*h*NT)) . 4);%4.order FDS

13 %1lk=4/h"2% ((sin (pi*h*NT)) . 2+1/3* (sin (pi*h*NT)) . 4+.

14 %8/45% (sin (pi*h*NT))."6);%6.order FDS

15 %$1k=4/h"2x% ((sin (pi*h*NT)) . 2+1/3* (sin (pi*h*NT)) . 4+.

16 %8/45% (sin (pi*h*NT)) . " 6+4/35*% (sin (pi*h*NT))."8);%8.order FDS
17 Ck=sqrt (h/L);

18 1k0=(2% (1:N) '*pi/L)."2;

v dd=1k; $%FDS

20 d(1:NH)=1kO0(1:NH);

21 d(NH:N2)=1kO(NH:-1:1); $FDSES

2 W=Ckxexp (2*pixi* (1:N)'*x'/L)"';

23 Wl=Ck*exp (-2*pixix (1:N)'*x'/L)"';

24 V(1:N2)=W1(1:N2,:)*F(:)./d(1:N2);

25 VV(1:N2)=W1l(1l:N2,:)*F(:)./dd(1:N2);

26 U=WxV;ui=max (abs (imag (U))) ;U=U-U(N, 1) +UO; $FDSES sol.

27 UU=W*VV; uui=max (abs (imag (UU) ) ) ; UU=UU-UU (N, 1) +U0; $FDS sol.
3 %real (Wl*W),A2=real (Wxdiag(lk)*W1l)% control, A2=Bl for O(h"2)
» figure,plot (x,prec, 'k*',x,U, 'r*x',x,00,"'-", .

3 'LineWidth', 2, 'MarkerSize', 3)

31 legend('prec. atr.', 'FDSES', 'FDS')

2 title(sprintf('Solution on x,N=%3.0f, .

33 imPDS=%6.5d, imDS=%6.5d',N,ui,uui))

34 kUU=abs (UU-prec); kU=abs (U-prec);max (kUU) ,h max (kU)

335 figure,plot(x,kU, 'rx',x, kUU, '-"',. .

36 'LineWidth', 2, 'MarkerSize', 3)

37 legend('FDSES', 'FDS')

33 title(sprintf('Error N=%2.0f,nFDSES=%6.5d, .

3 nFDS=%6.5d',N,max (kU) ,max (kUU)))

We can also obtain with FDSES the exact solution in the case for
linear combination of the functions sin(27zp;x/L),cos(2mpox/L) for
f(x)if N > 2« max(py,p2)-

1.6.2 Derivative of first order

The finite difference approximation O(h*") for first order derivative
u'(x;) using the uniform grid x; = jh with 2n+ 1 points stencil we
can obtained in following form:
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FDS+FDSES eigenvalues,L= 1,N= 40

O )
14000 o'y
———om%
12000 —on’)
—— FDSES

10000
$ 8000
6000
4000

2000

0 5 10 15 20 25 30 35 40

Fig. 1.1 Eigenvalues for —u” by N = 40,L =

1,n=1,2;3;4
1 p2n,,(2n+2) (é)
— 22 xi <& <xjin
u (x] k_Z_anu Xj— k) + e (2n+2)! Xj—n é Xj+n
Using propertys of anti-symmetry ¢,, = —c_,,co = 0 we get the sys-

tems of linear algebraic equations for determined the coefficients ¢,
in the form Y}, 2%k*" = §,,1,m = 1,n, with the the matrix Vander-
monde.

We have following matrix representation:

1

A0 = #10,¢1,¢2,...,€4,0,0, ... = cp, —Cp—1, ..., —C2, —c1],
where = 0.5mCy = 2L T

m =  m(n— m) (n+m)" i
Then the eigenvalues are: uk 2’ —1Cm Sin 2’5\’,"".
We have following expressions:
1) m = 2; sin*Z¢ = sin 22 (2 — 4sin’ ’f\f‘)
2)m = 3; s1n% = sm%@ 16sin? Z& N+ 16sin* %‘)

3) m = 4; sin 2Z* = sin 2% (4 — 40sin* ZX 7 v 96 sm4 Tk — 64 sin® ZK),

onk o 2 N ik
4) m = n; sin ’Kf —sm%(n_ +(_4)n 1 gin2n— Ty,

Therefore 1 = h sin 22k N Lom—1 dm s1n2m_2 ”—k

2 m—1
where the coefficients g, = ¢;,(—4)" ' =0. SQO W)2—4m) are not
depending on n. We have ¢| = 5,q2 3,q3 5,Q4 35, .

For FDSES we can replace the imaginary part of the discrete
eigenvalues dj = Im(uk) k = 1,N with the continues values d1; =

Im(20) = 22 in following way:

dp = dl,k = 1aN/2_ ladk+N/2 = _le/Zflﬁk = lvN/27dN/2 =0
(see Fig. 1.3).
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x10¢ Aproximation for 2-order derivatives (-u) Aproximation for Imag (1-order derivatives)
7
Eig-val O(h?) Eig-val O(h?)
6 - = Eig-val O(h") 200 - =" Eig-val O(h)
—— Eig-val O(h®) 150 —— Eig-val O(h®)
Eig-val O(h?) Eig-val O(h®)
5 /\ —— Eig-val O(h®) 100 —— Eig-val O(h®)|
Eig-val exact Eig-val exact

80 ['] 10 20 30 40 50 60 70 80
Fig. 1.2 Eigenvalues for —u” by N = 80,L = Fig. 1.3 Imaginary part of eigenvalues for i’
1,n=1;2;3;4;30 by N =80,L=1,n=1;2;3;4;30
$ 107 Aproximation for Imag (3-order derivatives)(-u(3) %10° Aproximation for 4-order derivatives
15 4
—— Eig-val O(h%) — Eig-val O(h)
== Eig-val O(h*) 35 == Eig-val O(h%)
1 —— Eig-val O(hf) —— Eig-val O(h’)
()
(

——— Eig-val O 3 ——— Eig-val O(hf)
Eig-val O(h®)| Eig-val O(h®)|
05 Eig-val exact Eig-val exact
,-\ 25
0 — ~ I 2

Fig. 1.4 Imaginary part of eigenvalues for Fig. 1.5 Eigenvalues for u”” by N = 80,L =
—u" by N=80,L=1,n=1;2;3;4;30 1,n=1;2;3;4;30

1.6.3 Derivative of fourth order

The finite difference approximation O(h?") for fourth order derivative
u”""(x;) using the uniform grid x; = jh with 2n+ 3 points stencil we
can obtain in following form:

oo l n . h2nu(2n+4) (g )
(xj) = A k_Z Cyaa(xj—k) + Eon (2n+4)!

—n

u Xjon < & < Xjjn.

Using properties of symmetry C,, = C_,,,Cy = —2 ZZZ{ we get the

systems of linear algebraic equations for determine the coefficients
Cwym = 11,n+1 in the form Y111 Ck*" = 128,0,m = T,n+1 or
V¢ = e with the the matrix Vandermonde V of the n + 1 order and
e=(0,1,0,---,0)7 is the unit column-vector of the n + 1 order.

If m = 2n+ 4 then we obtain Ep, = —2Y"" C,m** 4.

For the the inverse matrix B of the Vandermonde matrix with the
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elements b;; follows that C; = 12b;;,j = 1,n+1. Similarly we
consider the polynomials P}( x) = Z"Hb it PZ( ) = Pl( )x =
Z"H b jxF and R;(x )—szl( ) . From BV = E follows that Pz(kz)
Yitlb; k= 5kjandP1(k2)— 1//28 j,Rj(K*) =& j.k, j=T,n+ L.
Then the polynomial R; ( ) is the Lagrange polynomial

in following form R;(x) = HZI%#]- ;{Tkkzz andC;j=12bj, = 12/j2R/]‘(0)-
R'(x)

Using derivative of logarithm follows In’(R(x)) = 316 and R';(x) =

Rj(x )ZZ+}¢](x_k2)_l~ Then R}(O) = —R;(0)S;, where

12
Sj _):ZJF%;&J 20 R;(0) :HZi}#jjokkz.Therefore
24 NHZ(=1)"
C, = (n+1)N)*(—1) S, m—TnTT.

m?*(n+1—m)!(n+1+m)!

Forn=1wehave Ch=6,Cy = —4,C, =1, E, = —120. In this case the
circulant finite difference matrix A approximed the derivative u"” (x;)
is in the form

1
A= F[CO?CIV" 7Cn+170>"' 703Cn+17cn>"' 7C27C1]-

The eigenvalues of matrix A are L = h%zl\mj;(l)Cmexp(Znim/N):
(Co +2Y L Gy cos 2Bhm) or

4 n+1 _
My = Z Cpsin®(ztkm/N),k =T,N.

For obtaining the unknown coefficients Q,, in the relation

My = }% Y"1 0, sin*"(mk/N) undepending on n

we use the following expressions for sinus function (a = %k) :
sin’(ma) = m?sin®(a) + ... + Dy, sin®"(a),

where D,, = (—4)"~1,m > 0.

2qn
Then form=nby Qy11 = —Dp+1Cpt1 We obtain Oy = 24((nt D)7 ¢

(n+1)2(2n+2)1on+1-
We can assume that

2 4m—1 ~N 1
0, = % ;”:*llsizforallmZZ,n-H,Ql =0

For the strong prove can be used the m-th degree of
Spread polynomials S,,,(s) = sin®(ma),s = sin®(a),a = ”Wk Then we
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need proved that Q; = Z"“ CinQy,  Or
05((1— 1)) s > =

1 1)m+l 1( +1 1) o
—((l’l—l—l)) Zz+lmn+l —m)! (n—O—rln—O—m) 1(m—1)! S ,l—l,l’l—l—l,

where @, ; = T%(—@l I
Forl=n+1m=n+1),l=nim=nm=n+1),l=n—1(m=
n—1,m=nm=n+1) we can easily obtain identity. We have
02=4,03=3,04= 13§,

For FDSES we can replace the discrete eigenvalues dj = ., k = 1,N
with the continues values A; = (2”") in following way:

dk = Ak,k = 17N/27dk+N/2 = AN/Z—/(—Dk = 1,N/2,d]\] =0 (SCC Flg
1.5).

1.6.4 Derivative of third order

The finite difference approximation O(h>") for third order derivative
—u""(x;) using the uniform grid x; = jh with 2n+ 3 points stencil we
can obtain in following form :

1 hznu(2”+3)(§)
" (x) = 3 k_Zanu Xj-k) +€2nwaxj—n <& <Xjin-
Using properties of anti-symmetry c¢,, = —c_,;,co = 0 we get the

systems of linear algebraic equations for determine the coefficients
cm,m = 11,n+1 in the form

Yt el =Yt kP = 38,,5,m = 1,n+ 1, with the the matrix
Vandermonde of the n+ 1 order.

Using the coefficients for derivative of fourth order we obtain

6((n+1)1)*(—1)"
mn+1—m)!(n+1+m)!

Cm = Sm,mzl,n—|—1

For the derivatives —u’’(x;), j = 1,N we have following matrix rep-
resentation:

0_ 1
A —h—3[0,c1,cz,...,cn+1,0,...,0,—cn+1,— ny- CZv_cl]-

277:mk

Then the eigenvalues are: ,u,? —% —1 CmSIN =57 or

27tk n+1 2m—-2 wk
,uk ——sm Yoo Gmsin™" = 5
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2 4m—1
where the coefficients ¢, = 6 222)! Z’S": 2,q1 =0

are not depending on n. We have g =2,q3 =2,q4 = {gg, e

For FDSES we can replace the imaginary part of the discrete
eigenvalues dj = Im(,ulg),k = 1,N with the continues values d1; =

Im(A) = %’”‘3 in following way:
dp =dl,k=1,N/2=V.dinjp = —dlyp .k =1,N/2,dy;, =0
(see Fig. 1.4).

1.6.5 Derivative of k-th order

The finite difference approximation O(h*"+1=%) for k-th order deriva-
tive u*(x;) using the uniform grid x; = jh with 2n+ 1 points stencil
we can obtained in following form (j = O,N,2n+ 1 < N,k < 2n):
p2nt1-k;, (2n+1) (fé )
(2n+1)!

u(k)(xj hk Z Dk x]+m)+82n

m=—n
For every polynomial p(x) € P>, can be proved, that (M. Kokainis)

PO () = e e D Py m),
u® (x;) = L Xn_ D u(xjem) + O 8) k= 1(mod2),

hk &=m=—n
u) () = e X D"t (xj ) + O(W2"F27K) ke = 0(mod2),
(1.16)
where DY = (—1)*D}" \m =T,n,Df" = =" _,(1+ (=1)*)D5".

¢ The idea of prove. Denote ¢(t) = p(x; +th) then p(xj1m) =

q(m),p®(x;) = da?g( )hk If R, (1) € Py, is the Lagrange characteristic

polynomials with Ry, (r) = &y, (r,m) = —n,n, thenq(t) =Y5__, q(s)R
Define DY = Rg,f ) (0), then the first equation of (1.16) is valid by p =
Ry. From RY(0) = Y Ru(r)DX" = Y1, 8,uD5" = D& fol-

lows 9(0) =, L a(m)Ryy) (0) = Yo, q(m)D" and p®) (x;) =
n k n
hk Z =—n q( )D <>
For the derivatives u®) (x i), J = 1,N we have following matrix rep-
resentation:

1 1ykn ko k.,n k.n
Ak7n:h_k[D0 ,Dl ,...7Dn ,0, 0 D

k, k,
n+1’D D g’D ”]

s Xj—n <§ <Xjtn.

s(1)-
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Then the eigenvalues are: p; = % 1 DX sin z’xm,k = 1(mod2),
po=— X0 Dy sin® Bk = 0(mod?2)

or Uy = hi'kcos(n's/N) n_ prkgin2m-l o 5.k = 1(mod2),

Ws = 7z L sin(ms/N) Y, umks1n2m bz k 0(mod2),s =1,N,

kn m+r—1
o T, D e = 1(mod2),

rk k (m4r—1)!
P 2r 1 1 D Dy =k = 0(m0d2)
are not dependlng on n,

k, k
Dmn :R,(n)(()) = (—l)ner keﬁ”n km’eh k=

emik(—n,...,—1,1,.m—1,m+1,..n),
ej(t1,12,, .., 1k) = Yi<p <n<..i;<ix lirli---i; are the elementary sym-
metric polynomials.

where the coefﬁ01ents P’k

Example 1.9. Fork=1:¢5 | =T11 , jTI}= JITjpsr j=n!(—=1)"n!/m=
1, 1?2
(—1)}1(”‘)2/1’” andD "= (—1)m+1m,
4"m((m=1)Y% . 2m—1 ms

s = +cos(ms/N) Ll 1Wsm N
For k = 2 : eZn 2= ij—n J#£(m,0) an 1 egln—lzr%:—n,j#(m;O) j_l -
egln—l( j_—}’l j+ Z] 1 7 m)2: _rrlzeZn—l
and D - (_1)m+1 mz(n 21517;‘!)(n+m)! — ’%D%Jl,
Hs = — hz): m—)l,))smzm%.
Similarly

1 1
-3 = €y it (00 Lj>i,jtm 77 = €on—1(p — Om-12),
3, 1,
Dmn = 6(L — Om—1 Z)Dmna

4"m((m—1)1)? s dm—1 1
Mg = 3cos(7rs/N) T 2—(((2m) 16, 128in™"
1 4n _ 24 1,n
n4 = € 1m( —032), D m(m —Om—12)Dn

24 4m((m—1)1)2 2m77:s

— l
‘U,S—h—4 mzzwsm where Grl_ijlj .
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1.7 The self-conjugate finite difference operator with third kind
BC

For finite value o1 > 0,0, > 0 we consider following bondary value
problem for ODEs:

—u(x) = f(x),x €
W (0) — o1(0) = 0, (1.17)
u'(L)+ oou(L) =0.

The corresponding FDS for second order of approximation is
in following form:

—2(y1 —y0)/h* +201y0/h = £(0),
—i =iy )/ =fx;), j=1TN—1,  (1.18)
—2(yn—1—yn)/h*+202yn/h = f(L),

where h = %,xj = jh.
We obtain the FDS Ay = f with 3-diagonal matrix A of M = N +1
order in the following form

242ho; -2 0 ...
—1 2 —1..

0 O 0

0 O 0

0 0O 0 ..—12 -1

0 0 0 ..0 —224+20

where y, f is column-vector of N + 1 order with elements y, f (x j), j=
0,N.

Using two vectors y!, y? scalar product

02 = R(ENS yiy3 4+0.5(v05% + yAvR) can prove, that the opera-

j:
tor A is symmetrical and [Ay, y] > 0 [3].

1.7.1 The discrete spectral problem for difference operator

The corresponding discrete spectral problem Aw" = u,w"*, n=1,N+1
have following solution [3]
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— 1. .n 1
w”:in 1‘(27§W07W’11""7WnN—17ﬁW7\f)T7 (L.19)
Hn = 55 sin”(pph/2),
where L
wh = % cos(pux;j) + o1sin(p,x;), j = 0,N are the components of

column-vector w", p, are the positive roots of the following transcen-
dental equation

Sin2 (pnh) — h261 (6]

_ n=T.NFI 1.20
h(o1 + 02)sin(p,h) (120

cot(p,L) =

The solutions of the finite difference equations

—(wj+1—2wj+wj_1)/h2:,uwj, j=1,N—-1

can obtaln in the classical form

1— T = cos(ph) or pL = 75 4 sin’ pzh

Then w; = C; sin(px;) +C2 cos(px;).

The constants C1,C, are determined from the difference equations by
j=0,j = N and for the values p,, we obtain of the previous transcen-
dental equation.

The constants C2 = [w", w"] can be obtained in following form

C2 = h(A2S) +2A1A283 + A3S2 +0.5(A3 (1 + cos?(p,L))+
A3sin(p,L) +AAssin(2p,L)),

(1.21)
where A; = sm(p nf) ,Ar = 07

$1= YN cos <p,,x,) = 0.5(N — 1 4 pLsupalLob))

$2 = £ sin(pyy) = 0.5(N — 1 — el

S5 =0.5L Y\ sin(2pyx;) = 0.5 2 LLSui L) )

Then we have the orthonormed eigenvectors w", w" with the scalar
product [w",w™] = 8, Where 0, , is the Kronecker symbol.
1.7.2 The special solution for the discrete spectral problem

The experimental calculations with MATLAB shows, that the first
roots p,,n = N —1 of equations (1.20) are closed in the interval
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((n—1)m,nm), but the two roots py,py+; for finite values o7,0,
can not obtained from (1.20) (the spectral problem also is solved with
MATLAB using the operator eig ).

Depending on the parameter

Loiop
o1+ 02

we can be one (Q < 1) or two (Q > 1) roots from following new
transcendental equations obtained

B sinhz(pnh) +h*o 00

th(p,L) = _NN+1 122
coth(paL) 701+ oy)sinh(pph) N T (1.22)

and the eigenvalues and eigenvectors are in the following form

n_~—1¢1_n . n n 1 . n\T
w _Sn (\/%mela---awN—]?ﬁWN) ) (123)
Hn = 73 cosh”(p,h/2),
where w/} = (—1)/'(Sinhgl¢h) cosh(p,x;) — oy sinh(ppx;)), j=0,N, n=
Norn=N+1.
This special solutions of the finite difference equations

~(Wjr1=2wjtwin)/h = pw;,  j=TN—1

from u > % can obtain in the following form

—1+ “Thz = cosh(ph) or u = ;—zcoshz %h.

Then w; = (—1)/[C sinh(px;) + C, cosh(px;)].

The constants Cy,C; are determined from the difference equations by
j=0,j =N and the values py, py+1 are obtained from the previous

transcendental equation.
The constants C2 in this case are

C2 = h(A2S) + 2414283 + A3S) +0.5(A2(1 + cosh?(p,L) )+
AZsinh?(p,L) + A1 A, sinh(2p,L)),

| (1.24)
where A} = Smhglp"h) Az = 01
- sh(puL) sinh(p,(L—h
S1 =X} cosh? (pax;) = 0.5(N — 1+ = = sizlill?Pn(s)( %),

$2 = ) sinh? (paxj) = 0.5(—N -+ 1 4 L))
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S3=0.5T Y sinh(2p,x;) = 0.5 ML) sIh (L))

Then we have the orthonormed eigenvectors w",w" with the scalar
product [w",w™] = &, for all n,m =1,N + 1.

The expression Q = 1 follows from (1.22) by the limit case when
pn— 0.

If O > 1 then we have two positive eigenvalues of (1.22) (n = N;N +
1),

but for Q = 1 the first eigenvalue (n = N) is uy = 4/h?, (py = 0) and
the corresponding components WIJV of the orthonormed eigenvector w

whY
are obtained from the limit case (py — 0) for expression oy (1.23)in
the following form

wh = (=1)/(1—01x;)1/6h/(6L+ 20713 + LoZh? — 601L2), j =0, N.
J J 1
(1.25)

1.7.3 The discrete spectral problem for mixed BC
If 61 =  then we have the parameter Q = Lo, and from (1.20, 1.22)
follows the transcendental equations

Gzh
sinh(pnh)

62/’1

COt(an) = —Wﬂ’l =
n

1(Q < 1),coth(pyL) = (0>1).
Then depending of the parameter Q we have the following solutions
of the spectral problem:

I)forQ <1

w;?:C_ sin(pnx]) j=1,N,
Hn = 2 sin (pnh/Z) (1.26)

62 OS(L 0.5hsin(2p,L) cot(p,h)),n=1,N(Q < 1);

2)forQ >1

w) =Gy (= Disinh(pux;), = TN,
uN = 7 cosh®(pyh/2), (1.27)
C% = 0.5(L— 0.5hsinh(2pyL) coth(pyh)),
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wh .
3) for Q = 1 and when py — 0 from ﬁ we have the following com-
ponents of the orthonormed eigenvector w"

Wl = 2(—1)xj\/3h/ (PLA4L3), j=T.N. (1.28)

This expression follows also from(1.25) when o7 — co.
If 0, = o then from value of the parameter Q = Lo we have the
following transcendental equations:
B Glh
sin(p,h)

Glh

t(paL) = __oih
cot(puL) sinh(py/h)

1> 1(Q<1),coth(pyL) = (e=>1).
Then depending of the parameter Q we have the following eigenvec-
tors (the corresponding norms C,, and eigenvalues L, are remained):

W;l = C'n_1 Sin(pn(l‘_xj))7 .] = OvN_ 17 (Q < 1)7

wh' = Cy' (1) sinh(py(L—x)), j=0,N—T1, (@ > 1),

wh =2(=1)/ (1= x;)\/3h/(2hL+4L3), j=0,N—1,(Q=1).

(1.29)

Therefore the matrix A can be represented in form A = WDW7 | where
the column of the matrix W and the diagonal matrix D contains M or-
thonormed eigenvectors w” and eigenvalues ,,n = 1,M
correspondly, where M = N + 1 for finite value of o1 and 6o, M = N
for infinite 0] or 0. From WIW = E follows that W~ ! = wT.
From the solution of (1.18) follows Ay = WDWTy = f,.DWTy =
WIfWly=D"'"WTf,y=wD~'WTf,
where D! = diag(p, 1) is the diagonal matrix with the elements
w L k=T1,M.

Note 1.1. To follow the scalar product of vectors in this solution

1) for M = N + 1 the first f; and last fj; components of the vector f
are divided with /2, but the components y;, yys of the solution vector
y need to multiply with v/2;

2) for M = N the above-mentioned can be apply to first (0, = ) or
last (07 = o) component for vectors y, f.

If 61 = « and 0, = o then the matrix A represented in the form A =
WDW, (W = WT = W~1) is the symmetrical orthogonal matrix of

N — 1 order with elements pi,j:\/%sin%j, i,j=1,N—1
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and p, =nn/L,u, = ;—zsinz Svon=1N—1.
In this case M = N — 1 and the orthonormed eigenvectors wy(x;) =
\/2/Lsin(nmx;/L) are equal for discrete and continuous problems,

but eigenvalues are different (A2 = (“£)? for the differential operator).

1.7.4 The spectral problem for differential equation and FDSES

The solution of the spectral problem for differential equations
w (x)4+A2w(x) =0,x € (0,1),w (0) — o1w(0) = 0,w' (L) + Gaw(L) =0,

is in following form w,(x) = C; (A, cos(A.x) + o1sin(A,x)) , C2 =
2 2
0.5(L(A2 + 62) + 2%t | 5y,

A2+03
where (W, W) = Jo& Wn (X)W (x)dx = 8,,, and A, are positive roots
of the following transcendental equation:

)un 0102
o1+ 0> ln(Gl—l-Gz)’

cot(A,L) = n=1N+1. (1.30)
For the scalar product [w",w™] the integral (w,,wy,) is approximated

with trapezoidal formula and in the limit case if 4~ — O then from
(1.22,1.30) follows that u, — A2

If 61 = o then w,(x) = C, ! sin(A,x), C> = 0.5L(L+ ﬁ),
2 n
where A, are positive roots of the following equation
(9]
t(AL) = ——.
cot(A,L) 7

If 65 = oo then w, (x) = C; !'sin(A,(L—x)), C2 = 0.5L(L+ < sirfz(knL)),

where A, are positive roots of the following equation
9]
An

We can used also the Fourier method for solving (1.17) in the form

cot(A,L) = —

u@) = Y opn(0). £(0) = Y Bowi ()
k=1 k=1
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where wy(x) are the orthonormed eigenvectors, oy = g Be g, = (f,wr),

— 2.
For the discrete solution (1.18) we gety = ZQ”: | ogwk, f = 22’1:1 Bkwk
and By = [f,wh], 0q = ﬁ L where di = L. For this solution the note
1.1. is valid.

For the difference scheme with exact spectrum (FDSES) the matrix
A is represented in the form form A = WDW? and the diagonal matrix
D contain the first N 4+ 1 eigenvalues d; = /lkz, k=1,N +1 from the

. . 92
differential operator _(W) correspondly.
If dy = i, then we have the method of finite difference approximation
with tridiagonal matrix A.
If 61 = 0, = o then we have the boundary conditions of first kind and
the matrix A is represented in the form A = WDW, where W = W1

TTij

N
i, j=1,N—1,dy=(kn/L)* = 75sin* 5% k=1,N—1, (AW =WD).
The FDSES method is more stable as the method of finite difference
by approximation with central difference, because the eigenvalues are

larger dy > .

is the symmetrical orthogonal matrix with elements p; j:\/g sin =+

1.7.5 The examples of boundary value problems for ODEs

Example 1. The boundary value problem (1.17) is solved by f(x) =

) . __ ojcos(L)+0102 smL+62
12x*Cp + o sin(x),Co = A+ o, L8

The exact solution of the differential problem is
u(x) = —x*Co+ 1+ oy sin(x).
The exact solution of the corresponding FDS (1.18) is

_ ) 212 4 N ain2 _
yj = Ci(1+o1x)) + (xjh” —x7)Co + 611(0.25Asin(x;) / sin~(0.5h)
0.5x;cot(0.5h)), where
C: = S+ (LA =L2)+(L—h)*h*—(L—h)* +6/°L*)+C)

1= (I oh)(1+0 L)~ (1+01{L-A)) )

C, = 0.5h20; sin(L) +0.25- "(lg 5y (sin(L—h) = (1+ 0yh) sin(L))

+0.501h% cot(0.5h)(1 +L<;2).
Using the Fourier method we have following coefficients:

oy = 12Co (A (P (12 — —)+ 3 cos(AuL))+
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Q(COS(ZkL) (l —L2)+

lz Ao \AZ

k2 Sln(;tkL) — %)) +0. 561( (sin((fkkjll)L) _sin(()le;irll)L))_'_
A’k I(COS(()X{,{ ll)L) 1 cos((lfk—ill) )—1))/

(0.5(L(A{ +07)+ 02 A"ZL,HGI)).

The solution of the problem (1.18) are obtained with MATLAB,
using the spectral problem (1.20)-(1.28) in the formy =A~'F or y =
PD~'PTF, where D™! is the diagonal matrix with elements y, ',k =
1,N + 1. In Tab. 1.3 we can see the last eigenvalues py, py+1, UN, UN+1
obtained from (1.20), (1.22) and the maximum norm of the difference
from the solution of finite difference scheme (6(FDS)) and FDSES
(0(FDSES)) between the exact solution. The calculated eigenvalues
are coincidence with the eigenvalues, obtained with the MATLAB op-
erator “eig” for matrix A.

In the Figs. 1.6, 1.7 we can see the solution of the test problem by o7 =
2,00=0.1,N=15and L=11(Q > 1, the Fig. 1.9), L=10(Q < 1),
the Fig. 1.10).

Solution on x N= 15,sigma, =2.00,sigma,=0.10,L=11.00 Solution on x N= 15,sigma, =2.00,sigma,=0.10,L=10.00

35
8 ¢ g :ﬂx:(::;bs:;l a 3 4 O exact. sol. 3 g
9 # DSsol. O Matlab sol & 4
25 o *_ Fourier sol. s + DSsol @
2 3 6 4 *__Fourier sol I
H
15 ® . 2 ¢ @&
1 . 1 o
05 3 °
@ 0
0 ] 3 :
_0s L] 1 ;
1 g 8 L
0 2 4 6 8 10 12 0 2 4 6 8 10
Fig. 1.6 Solution for 01 = 2,00 = 0.1,/ = Fig. 1.7 Solution for o) = 2,0, = 0.1,/ =
11,0> 1 10,0 < 1

In following Figs. 1.8, 1.9 we can see the eigenvalues by N =
10,01 =1,0,=1;2,L=1;5, obtained with MATLAB m.file "ipas3v”
and following m.file EXPP:
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Table 1.2 The values of 61,062,N,L,6(FDS),8(FDSES), pn, N, PN+1, UN-+1-

Q

02

N

L [8(FDS)

5(FDSES)

PN

Uy

PN+1

Hn+1

0.1
0.1
0.1
2.0
2.0
2.0
2.0
1.0
1.0

SO == == NN

10
20
15
10
15
30
60
10
20

11.0
11.0
11.0
2.0
2.0
2.0
2.0
2.0
2.0

0.4795
0.1582
0.2484
0.0099
0.00516
0.00175
0.00062
0.0053
0.0018

0.1788
0.0525
0.0856
0.00540
0.00270
0.00089
0.00031
0.0036
0.0013

0.0370
0.0370
0.0370
0.840
0.840
0.840
0.840
14.480
30.190

3.3072
13.2245
7.4394
100.70
225.71
900.70
3600.7
98.500
398.49

1.3906

1.7297

1.6038
1.950
1.950
1.950
1.950
1.030
1.030

5.6473
16.4404
10.3208
103.87
228.95
904.00
3604.0
101.06
401.06

© N9 wm B W D —

function EXPP (N)
N1=(N+1) ;sigl=1;sig2=2;L=1.5;Q=L*sigl*sig2/ (sigl+sig2);
[1k0, 1k,W]=ipas3v (N, sigl,sig2,L); 1k (N),b 1k (N1)
figure,plot ((1:N1)', 1k,
title(sprintf ('Eig-val.sigma_1=%3.2f,sigma_ 2=.
%$3.2f,0=%6.4f",sigl,sig2,Q))
xlabel ('\itn'), ylabel('\it eig-val.')
legend('discrete’,

'differential')

"x', (1:N1)',1k0.°2,'0")

The last eigenvalues wy, Uy are (N = 10,61 =1) :

394.64; 402.38 (0, = 1,L = 1,0 = 0.5), 16.94; 19.31 (0, = 2,L

5,0=3.333),177.78; 181.81 (0, = I,L=1.5,0 = 1),

Eig-val.sigma,=1.00,sigma,=1.00,0=0.5000

900

800

700

600

500

eig-val.

400

300

200

100

*  discrete
© _differential

Fig. 1.8 Eigenvalues for 0 = 0, = L =

1,0=05

Eig-val.sigma, =1.00,sigma,=2.00,0=3.3333

* discrete
O _differential

*0

Fig. 1.9 Eigenvalues for 0y = 1,00 =2,L =
5,0=3.333

Example 2. For 6; = « we consider following problem:

{

_u//(x)

f(x),x€(0,L),
u(0) =0,u' (L) + oou(L) =0,

(1.31)
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where f(X) =12x C(),C() = m

The exact solution of the differential problem is u(x) = —x*Co +x.

The corresponding FDS for second order of approximation is in fol-

lowing form:

{yl:Oa_(y]—Fl_zy]_l_y]—l)/hz:f(-x])a J:17N_17 (132)
2(yn—1—yn) /I + 20298 /h = f(1),
The exact solutions of the discrete problem is
= Co(Cx; +x2h2 — X" ) where
C1 = L2h2)(1+c;2h);z 1({;- G};)Z)W (Loh)* +6h°L . We have following Fourier

coefficients:
o = 12Cy (“‘“W” (L*0y — 2% +2L) — )/(0 S(L+ 22)-

The solution of this problem is obtamed with MATLAB (see the
Tab. 1.3), using the spectral problem (1.26)-(1.28) in the form y =
PD-'PTF.

Table 1.3 The values of 62,N,L,5(FDS),0(FDSES), py, U for 6] = oo

o:|N| L |8(FDS)|8(FDSES)| py | uy
10[ 0.2 [0.00204| 0.00150 |157.08|10000.
20(0.20/0.00069| 0.00051 |314.16(40000.
10[ 0.1 [0.00118| 0.00087 [303.00{39865.
10[ 0.3 [0.00269| 0.00180 | 43.00 [4462.7
10[ 1.5 [0.01346| 0.00890 | 0.850 [178.51
10[ 1.0 [0.01021| 000730 [31.420 400.0
10[ 0.9 [0.00945| 0.00690 |34.305(493.47

— = = W W W W

1.8 MATLAB for solving spectral problems with BCs of 3. kind

We consider special m.file ”ipas3v” with
’[1k0,1k,W]=ipas3v(N,sigl,sig2,L.)” for solving the discrete spectral
problem and diferential spectral problem for BC of the third kind,
where W = P is the matrix with orthonomed eigenvetors,

kO, Ik are the column-vectors with eigenvalues corresponding
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of differential and discrete operators
Uj= lk(j),/lj =1k0(j),j=1,N+1 (o) = sigl, 0, = sig2).

%$1k0"2--differential, lk--discr. eig-val., W- matrix

% u'(0)-sigl u(0)=0,u' (L)+sig2 u(L)=0,-u'' (x)=$\lambda”2 u(x)
function [1kO, 1lk,W]=ipas3v (N, sigl,sig2,L)
N1=N+1;N2=N-1;x=linspace(0,L,N1)';el=1.e-4;

1lk0=zeros (N1l,1);lkl=zeros (N1l,1);h=L/N;

$figure, fplot (@msakl, [0,40,0,5],[1,[],'-',sigl,sig2,h, L)
% plot for discrete eig-val. estimation

$figure, fplot (@msak, [0, 40,0,10], [1,[],'-',sigl,sig2,L)

% plot for diferential eig-val. estimation

for j=1:N1

1k0 (j) =fzero (@msak, [pi/L*x (j-1) +el,pi/Lxj-el], [],sigl,sig2,L);

end

for j=1:N2

1kl (j) =fzero (@msakl, [pi/L* (j—1)+el,pi/Lxj-el], []1,sigl,sig2,h,L

end \% the val. p_j

1k=4/(h"2) *(sin (0.5%1k1l (1:N2) xh)) ."2;

CKl=sqrt (2xh./ (L* ( (sin (1k1l (1:N2) *h) /h) . "2+sigl”2).

+0.25%sin (2%1k1 (1:N2) *L) .*sin (2%x1k1l (1:N2) *h) /h—. ..
0.5%xsigl”2+h*sin(2+1k1 (1:N2) *xL) . xcot (1k1 (1:N2) xh) +.

2%xsiglx (sin(1k1(1:N2)*L))."2.*cos (1k1l(1:N2)«h)));

W=(0.5%(sin(1k1l (1:N2) x (h+x'))-sin(1k1l(1:N2) % (-h+x'))) /h.
+sigl*sin(1lk1(1:N2)*x'))"';

sgk=Lx (sigl*sig2) / (sigl+sig2 ) % criterium

if sgk < 1,

1k1 (N) =fzero (@msakl, [pi/L* (N-1)+el,pi/L*N-el], [], .
sigl,sig2,h,L);

1k (N)=4/(h"2) * (sin(0.5*x1k1l (N) *xh)) ."2; kl=1k1(N);

CK1 (N) =sqgrt (2+h./ (L* ((sin(klxh) /h) $. " 2+sigl”2).

+0.25%sin (2xk1*L) . *sin(2xk1lxh) /h-0.5. ..
*$sigl”2$xh+sin (2+k1*L) . xcot (k1lxh)+.

2xsiglx (sin(k1lxL))."2.xcos (kl+h)));

W(:,N)=(0.5%(sin(klx (h+x))-sin(kl* (-h+x)))/h +sigl*sin(klx*x));
% figure, fplot (@£f1, [0,30,-3,10],[],[],"'-',sigl,sig2,h,L)

% plot for special eig-val. by Q<1

%title (sprintf ('Spec. eig-val.Q<1$,0=\%4.1f', sgk))

1kl (N1)=fzero(@f1, [0.011,7],[],sigl,sig2,h,L);

1k (N1)=2/h"2*x (cosh (1k1l (N1) *xh)+1);

k1=1k1 (N1);

CK1 (N1)=sgrt (2xh/ (L* ( (sinh (k1xh) /h) "2-sigl”2) .

+0.25%sinh (2xk1*L) *sinh (2xk1xh) /h+0.5. ..
*sigl”2xhxsinh (2xk1*L) *cosh (k1xh) /sinh (k1xh) .

-2%siglx (sinh(k1%L))."2.%xcosh(klxh)));

W(:,N1)=(-1)."{[1:N1]'}.*(0.5%(sinh (kl* (h+x))-.

sinh (k1 (~h+x))) /h-sigl*sinh (k1lx*x));

end

if sgk ==

1k1 (N) =N*pi/L; 1k (N)=4/(h"2) x (sin(0.5%1k1l (N) xh)) ."2;

CK1 (N) =sqrt (h/ (-sigl*L"2 +L +sigl”2%L"3/3 +L*sigl”“2xh"2/6));




1.8

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

90
91
92
93
94
95
96
97
98
99

MATLAB for solving spectral problems with BCs of 3. kind

W(:,N)=$(-1)."{[1:N1]'}$.%(l-siglx*x);

$figure, fplot (@£1, [0,30,-1,101, [1,[]1,'-',sigl,sig2,h,L)
% plot for special eig-val. by Q=1

$title (sprintf ('Spec eig-val. Q=1,0=%4.1f"',6 sgk))
1k1 (N1) =fzero (@£1, [0.001,301, [1,sigl,sig2,h,L);

1k (N1l)= 2/h"2% (cosh(1lk1l (N1) xh)+1);

k1l=1k1 (N1);

CK1 (N1)=sqgrt (2xh/ (L* ( (sinh (k1xh) /h) "2-sigl”2) .
+0.25%sinh (2%k1%L) *#sinh (2xk1xh) /h+. . .
0.5%$sigl”"2xhxsinh (2xk1%L) *xcosh (k1xh) /sinh (k1lxh)-.
2xsiglx (sinh(k1lxL)) ."2.xcosh(klxh)));
W(:,N1)=(-1)."{[1:N1]'}$.*(0.5%(sinh (k1% (h+x)).
—sinh (k1# (-h+x)))/h-sigl#sinh (klxx));

end
if sgk > 1
$figure, fplot (@£f1, [0, 30,-1,10], [],[],'-',sigl,sig2,h, L)

)

% plot for special eig-val. by 0O>1

$title (sprintf ('Spec pavrt.Q>1,0=%4.1f',sgk))
1k1 (N) =fzero(@f1, [0.0001,0.1],[],sigl,sig2,h,L);
1k (N)=2/h"2* (cosh (1k1l (N) xh) +1) ;

k1=1k1l (N);

CK1 (N) =sqrt (2+h/ (L* ( (sinh (k1xh) /h) "2-sigl”2).
+0.25%sinh (2xk1l*L) *xsinh (2+xk1lxh) /h+. ..
0.5%sigl”2xh*sinh (2xk1l*L) *xcosh (k1lxh) /sinh (klxh) .
-2%xsiglx (sinh (k1%L))."2.*cosh(klxh)));

W(:, N)=(-1)."{[1:N1]'}.%(0.5%(sinh(klx (h+x)) .
—-sinh (k1* (-h+x)))/h-sigl*sinh (klxx));

1kl (N1)=fzero(@f1l, [0.2,3],[],sigl,sig2,h,L);

1k (N1)=2/h"2* (cosh (1k1l (N1) xh)+1);

k1=1k1 (N1);

CK1 (N1)=sgrt (2xh/ (L* ( (sinh (k1xh) /h) "2-sigl”2) .
+0.25%sinh (2xk1*L) *sinh (2xk1lxh) /h+. ..
0.5%sigl”2xh*sinh (2xk1l*L) *xcosh (klxh) /sinh (klxh) .
—-2xsigl* (sinh (k1lxL))."2.*xcosh(klxh)));

W(:,N1)=(-1)."{[1:N1]'}.*(0.5%(sinh (k1 (h+x)).
—sinh (k1% (-h+x))) /h-sigl*sinh (klxx));

end

for j=1:N1

W(:,3)=W(:,]).*xCK1(j,1);end;

W(l,:)= W(1,:)/sqart(2);

W(N1l, :)=W(N1, :)/sqrt(2); % orthnorm. eig-vect.
$A2=Wxdiag (lk) *W',by solving A2xu=f,

$vect. f,u first and last elem. need coresp..
divide and multiply with sqrt (2)

function y=f1(x,sigl,sig2,h, L)

y=tanh (x*L) * (siglxsig2xh”2+ (sinh (x+*h)) "2) /h/sinh (x*h) .
- (sig2+siqgl);

function y=msak (x,sigl,sig2,L)

y= cot (x*L) - (x— siglxsig2/x)/ (sigl+sig2);
function y=msakl (x,sigl,sig2,h,L)

y= cot (x*L) - (sin(xxh) /h -h*siglx*sig2/sin(x*h))/(sig2+sigl);

41
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1.9 The non-conjugate finite difference operator with the
periodical BC

We consider following boundary value problem
L(u) = u" (x) +au (x) = —f(x),u(0) = u(L),ud' (0) =u'(L) (1.33)

where a is constant parameter. This problem has unique solutions by
fOL f(x)dx = 0,u(xp) = up, where xo € [0,L],uq are fixed constant.
The analytical solution of this problem is
ux) = — 1 (SRSl [Fexp(ar) £(r)de+
Jo (exp(—a(x—1)) = 1) f(t)dr ),
where u(0) = 0,u'(0) = [~exp(ar)f(t)dt/(exp(al) —1).

In this case we have corresponding A. Iljin FDS (M = N)

A() = —(rae+ays) = F(3),5(0) = Y(L), (k) = y(L+h),x = x; = jh,
(1.34)

where j = 1,N,y = a.coth(at), a = 0.5ah.

The FDS 1.34 we can obtain also from the exact FDS

using the integro-interpolation method for solving the equation (pu') =

—p(x)f(x),(p(x) = exp(ax)), in the form:
—(aj1(ujr1—uj) —ajuj—uj1)) =F; +F; ,j=1,N, (1.35)

where Up = uUn,uy = UN+1,

L ( xj dx \—1_ exp(ax;) exp(axj)
aj= (ij 1 p(x) ) ~ exp(ah)—1° aJ‘H I—exp(—ah)’
— (X x dt
F/ - xjjfl ( ) dx =

exp(alh)—l ;JI_I (exp( (X+ h)) o exp(axj)) ( )

Fif = [57 (1=ajer [ A5) p(x) f(x)dx

ek 3 explas) - explate— ) Fr)d

Multiply the equation 1.35 with exp(—ax;)/h we obtain the exact FDS

1
Aw) = o5 (=(r+ @ujpr 2y — (Y= auj1 )= F;,  (1.36)

where
j: l,N,u() = UN,U] = UN+1,
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. —xi_ 1 .
Fy= b (o, S P poau fo SRt )
If f = const then this FDS 1s A. ILjin FDS

The corresponding spectral problem is Aw = uw or in the index

form (wo = wn,wi =wn_1,)

1 )
ﬁ(—(ﬂ- Q)Wjr1+2ywj— (Y—o)wj_1) = uw;,j=1,N,

or

AWk = w* k=T,
where A = }3—2[2)/,—()/4— «),0,0,...0,—(y — a)], w* are the circulant

matrix and column-vector of the N order with the elements wk i
From the propertys of the circulant matrixes follows that
W = (51n(k7r/N) (v —iacot%”),

w’; = \/;exp(ka]/N),w’jj = \/;exp(—Zﬂ?ikj/N)k j: 1,N, and

the scalar product of two eigenvectors (wK, W) = ):N 1 w = 8 m-

The complex eigenvalues L are complex conJugate as regards
k=N, =N/2or Uy = y,m=1,N/2, where N is even num-
ber.

For the solution the discrete problem Ay = f we use the transfor-
mation W,y =V or y = WV. Then DV = W, f or in components
For j = N we have the expression 0 = ):;(v: | f(xk) where consist with
the integral condition.

The value vy is indeterminable and we can take vy = 0. For j =
I,N—1 we have v; = dij(W* f)j and the solution is in the form

y = WV. If d; = A4 then we can obtain the solution of FDSES in fol-
lowing way:

Ddy = A for k = 1,N,, where N, = N /2.

Z)dk ;LN k for k = Nz, 1 dN =0.

The solution of the FDS Ay = f we can obtain by spectral method
also in the real form. For vector f of N order with component f;, j =
1,N using wk = whN =% = w’k,w?] = w? =1,j=1,N we have
following expressions:
f= X vt = T (bt b8 by b =
IY (bt by ) W+ W =0) - (b + by ) (= w0+
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b, w2 +byw? | by = (f7 by,
or fj = Z*NZ (bre cos 2Zki + by sin Zﬂkj) + e boc
where by, = f(bk ‘H?N ) =

\fZ lfj(w +W> NZ lfJCOSZEkJ bks \/N(bk_bN—k):
SO —wh) = RT) fysin k=T NS,

by = by = Wz,-zl fisboc = bre = Jbo, by e =

by, = 5 XY= cos(jm),

Ny = 27szs bys =0, Z*N2[3 ZN2 IB +l31v/2.

Similarly the solution of the discrete problem can be represented in

the following form y; = Zivzl akwlj‘-.

Then f; = Ay; = ):5(\]:1 akukwk =

Iy (e + an— ity i) (Wh+ wN )+

(ke + an k- k)(Wk - W],V ) +aN2uN/2wN2 =
21k j

Y% ((axeRe (1) +agsIm(pig)) cos —+ (arsRe(t) — arcIm (W )) sin =),
because (artly +ay—_iin—i)/VN = akCRe(,uk) + agsIm(py),

i(art — an—ty—i) / VN = agsRe () — aglm(uy),

where a;, = % Qps = l(“"*% are the coefficients in

. _ 27k j 2wk j
the expression y; = Y lakw Zk 7 (age cos =t 4 ays sin =572 ).

Therefore we have followmg system of two algebralc equations:

{ axcRe (W) + agsIm (W) = by, 137)
agsRe(We) — akeIm() = brs,k = 1,N, :
or
I 1
Qge = TP (brcRe () = brsIm(iy) ), axs = T (brsRe(ty) + bcIm(y) ),
(1.38)
where

Re(uy) = iz(sin(kn/N)zy,Im(,uk) = —%(sin(kn/N)zacot’j\,—”),k =
1,Ns.

We can obtain the equations (1.37) from the real N-order matrix B
(matrix-representation for the approximations of the first and second
derivatives) spectral problems:

Bwk = ,Ukwk,BW]; = .u]jW]L

B(wF+wh) = 0.5((pie+ p) (WF +wh) + (i — ) (w* = wi)),
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B(w* —wk) = 0.5((pe+ 1) (W —w) + (s — ) (w* + —wh)),

or Bcosy = Re () cosy —Im( L) sing, Bsing = Re () sing +Im( Ly ) cosy,

where sing, cos; are the column-vectors with the elements sin %‘ ,COS %
For the differential spectral problem

—L = —W'x)+aw'(x) = Aw(x),x € (0,L),w(0) = w(L),w(0) =

w(L)

we obtain 2 = (27k/L)? — 2mkai/L.w(x) = | Lexp(2mike/L).

WA () =/ Fexp(~2mikn/L) = w k().

(WE, W) = [wk (X)W (x)dx = Sy, kym = —o0, Foo.

The solution of (1.33) with the Fourier method can be obtained in fol-
lowing form:

() = i bw* (x), b = Wh, f), u(x) = L _apw*(x),ax =
bk/lk.

For periodical function f(x) follows the complex expansion

) = Lo bow*(x) = Xy (b (6) + by ™ () + 5. =

5 X1 ((bebi) (W () +wk () + (b= i) (W () = wh (x)) + - =
Zzo:] (bkc cos 27kx 27rkx + by sin 27rkx) _|_ boc by = (f, Wi)’

where by = ﬁ(bk—kb, k) = ﬁ fo Fx) (WK (x) +wk(x))dx) =
%fOLf(t)cos @dt,

bis = (b= b_y) = o [ () (A () — () ) =

2 [ f(r)sin 2K gy

Therefore the solution of (1.33) we can obtain also in real form:

u(x) = Y (agecos 2 + gy sin 22Ky 4 de

where ay., aig are unknown coefficients.

From f(x) = —(u" (x) +au' (x)) = = L _.ax(W' (x)* +aw' (x)) =

Lo ardow(x)* follows f(x) = 3 T3y (axde+a—gd—i) (w(x)* +w(x) ™) +
(@i + a1 Ag) (w(x)k —w(x)~F)) =

Y ((agcRe(Ay) +agsIm(Ag)) cos 2721“ + (arsRe(Ar) — agcIm(Ay)) sin Z”kx),
because (aklk + a_kl_k)/\/_ = ache(lk) + akslm(/lk),

i(axh — a_iA—i) /VL = agRe(Ar) — arcIm(Ay),

where ay, = “"“\L/%*",aks = ’(“k% are the coefficients in the expres-

sion from the solution u(x), where can obtained from (1.37,1.38) re-
placing w with Ae(Re(A) = 45K Im(%;) = —28ka),
If h — 0 then u — A.
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We have following expressions:
—L(cos z’zkx) Re(Ay) cos 272’“ Im(2y) sin =2 2’”"‘

—L(sin 2Z%) = Re(A) sin 222 4 Im(Ay) cos %

A(cos @) Re(y ) cos M — Im( )sm%
A(sin %) Re () sin =54 2”1” + Im(py) cos M
Using the ortonormed COIldlthIlS of

g =sin,p =cosor 7 2 L g(Z) p( ) dx = § ,

27k 21kx ) :
2 1}/:1 (= x’)p(%) = Ok, We can obtain the solution of the

problem with simple date, when the function f(x) is proportional to
the eigenfunctions.

Example 1.10. If f(x) = sin(2mx) = L (w!(x) —w™ ' (x)),L =1,

2i
1

then b = Z’b_l = _E7blc =0,b;5s=1,

_ 1 -1 _ 1 I |
u(x) =ayw (x) +a_ 1w a1 = gp,a-1 = —55—

_ 4m?sin(2mx)4+27acos(2wx) ooy 813
u(x) = (4n2)2+4n2a? u'(0) = (4n2)24+4m2a2 "
qr. — Ambi+2maby _ 2ma 4n’by,—2maby. _ 4n?

le = A2 VAR als = A VAL

u(x) = aj.cos(27mx) + ajssin(27x), |A|? = 47%)? + 4n2a?

This solution we have obtain also in following way:

u(x) =d cos(27tx) + dy sin(27x)(d, ,d>— unknown coeficients,
—L(u) = dy(—L(cos(27x))) + da(—L(sin(27x))) =
dy(Re(Ay)cos(2mx) — Im(Ay) sin(27x)) + dp (Re(Ay) sin(27x)+
Im(Ay)cos(2mx)) = f(x) = sin(27x)

or lee(ll) + dz]m(ll) =0, —dllm(ll) —|—d2R€(ll) =

__ImA __ Re(M
d=-Tmp 2=

Similaly y; = dy cos(27j/N)+dysin(2mj/N),dy = = fikt d = Felby.

We can obtain the solution of FDSES by replasing the discrete eigen-

values Ly with the first N eigenvalues Ay, k = 1,N/2. For FDS with

the central differences y = 1.

The exact solution of the problem with f(x) = cos(2Pmx/L)exp(sin(2Pnx/L))
can be obtained use the Matlab operator ”quad” (see the listing). The
calculations with MATLAB by L = 2,a = 3 give following maximal

errors:

1 P=2,N=20:0.044(FDS),0.0049(FDSES),

2) P =2,N = 40:0.0082(FDS),1.510~%(FDSES), (see Figs. 1.10,

1.11),




1.9 The non-conjugate finite difference operator with the periodical BC 47

3)P=4,N=40:0.0111(FDS),0.0114(FDS,y=1),0.0012(FDSES) (see
Fig. 1.12),

4)P=4,N =80:0.0020(FDS),0.0021(FDS,y=1),3.10~ 7 (FDSES)

(see Fig. 1.13).

Ifa=10,L =P =2, then

1) N =40:0.010(FDS),0.014(FDS,y=1),0.003(FDSES),

2) N =20:0.043(FDS),0.060(FDS,y=1),0.006(FDSES)'.

The results obtained with real and complex expressions are equally.

The FDS with central difference is conditionally stable for |a| < 2.

1 $ODE U''+a U'=f(x) with periodical BC
2 % example cos (2piPx/L)exp (sin (2piPx/L),Iljin FDS

3 function PDSperl (N)% N-even

4+ N1=N+1;N2=N-1; NH=N/2; L=2;x=linspace(0,L,N1)"';

5 x=x(2:N1) ; h=L/N;Bl=zeros (N, N) ; V=zeros (N, 1) ;d=zeros (N, 1) ;

¢ VV=zeros(N,1l);dl=zeros (N, 1) ;prec=zeros(N,1);

7 P=2;U0=0;a=3;alfa=axh/2;gamma=alfa*coth(alfa);

s Bl=Bl+2xgammaxdiag (ones (N, 1)) - (gamma—-alfa)*xdiag(ones(N2,1),-1)
9 —(gamma+alfa)+diag(ones(N2,1),1);

10 Bl1(1,N)=-(gamma -alfa); B1l(N,1l)=-(gamma+alfa);

11 Bl=Bl/(h"2);%3-diag. matrix for O(h"2)

2 gg=@(t) cos(2*xpi*P*t/L) .*exp (5*sin (2xpi*P*t/L));

13 ggl=Q(t)exp(a*t).*xcos (2xpi*Pxt/L) .*exp(5*sin (2xpi*xPxt/L));

14 pre=quad(ggl,0,L,1.e-10);

5 for j=1:N

16 prec(j)= (exp(—a*L)-exp(—ax(x(j)+L)))/(l-exp(-a*L))/a*pre +. .
17 (quad(gg,0,x(j),1.e-10)-exp(-a*x(j))*quad(ggl,0,x(j),1l.e-10))/a ;
13 end % quadrature formula

19 F=—cos (2xpi*P*x/L) . *exp (5*sin (2xpi*P*x/L));

20 NT=(1:N)'/L;

21 lk=4%alfa/h" 2% ((sin (pi*h*NT))."2 xcoth(alfa) -...

2 0.5%i*sin (2xpixhxNT));

23 $%$FDS

24 Ck=sqgrt (h/L);

5 1k0=(2% (1:N) '#pi/L)."2 — 2% (1:N) '«pi/L*axi; %exact eigenvalues
% dd=1k; $%FDS

27 dl1(1:NH)=conj(1lkO0(1:NH));

23 dl1(NH:N2)=(1lkO(NH:-1:1));

29 d(l:NH)=(1lkO0(1:NH));

30 d(NH:N2)=(1lkO(NH:-1:1));%FDSES

31 rl=real (d);il=imag(d); r2=real (dd); i2=imag(dd) ;

2 W=Ck*exp (2%pi*ix (1:N)'*x'/L)'; % Eigen vectors

33 Wl=Ck*exp (-2*pixix (1:N)'*xx'/L)';% Eigen vectors-conjugate

34 V(1:N2)=W1(1:N2,:)*F(:)./(d1(1:N2)); %transfor. sol.FDSES

35 VV(1:N2)=W1(1:N2,:)*F(:)./conj(dd(1:N2));%transf. sol.FDS

36 %Real eig-func.

37 WC=cos (2+pi* (1:NH) '#x'/L) ';WS=sin (2xpi* (1:NH) '*x'/L)"';

33 Ak=W1*F;FF=WxAk; MMM=max (abs (FF-F))% control Fourier expr.

39 Bke=2/N*WC'xF;Bks=2/N*xWS'*F;B0= 0; %coef-Fourier
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40 Akecl=(rl(1l:NH).*xBkc —-il (1:NH) .*Bks) ./ (abs(d(1:NH))) . 2;%FDSEs
41 Aksl=(rl(l:NH).*Bks +il(1:NH).*Bkc)./(abs(d(1:NH)))." 2;%FDSEs
2 Ake=(r2(1:NH) .x*xBkc —-i2 (1:NH) .*Bks) ./ (abs(dd(1:NH)))."2;%FDS
43 Aks=(r2(1:NH) .*Bks +i2 (1:NH) .*xBkc) ./ (abs(dd(1:NH)))."2;%FDS
4  Akec (end) =Akc (end) /2; Akcl (end)=Akcl (end)/2;

45 Aks (end)=Aks (end) /2; Aksl (end)=Aksl (end)/2;

46 UU=WCxAkc+WS*Aks;% FDS real solutions;

47 U=WC*Akcl+WSxAksl; % FDSES real solutions;

48 Ul=WxV; SFDSES sol.

4 UUl=W*VV; % FDS sol.

50 uil=max (abs (imag(Ul)));U1=U1-Ul (N, 1) +UOQ; $FDSES sol.error

51 uuil=max (abs (imag (UU1)) ) ;UU1=UU1-UUl (N, 1) +U0; $FDS sol.err

52 ui=max (abs (imag (U))) ;U=U-U(N, 1) +U0; $FDSES sol.error-real

53 uui=max (abs (imag (UU) ) ) ; UU=UU-UU (N, 1) +UO; $FDS sol.error-real
54 SW1lxW; A2=Wxdiag(lk) *W1l% control, A2=Bl for O(h"2)

55 figure

s plot (x,prec, 'k*',x,U1,'-."',x,0U01, " '-', 'LineWidth',2, ...

57 'MarkerSize',5)

ss legend('prec. atr.', 'FDSES', 'FDS')

59 title(sprintf('Solution on x,N=...

60 %$3.0f,imPDS=%6.5d, imDS=%6.5d',N,uil,uuil))

s1 figure

&2 plot(x,prec, 'k*',x,U,'-.",x,00,'-", 'LineWidth',2, ...

63 'MarkerSize',5)

¢4 legend('prec. atr.', 'FDSES-real',6 'FDS-real')

s title(sprintf('Sol.-real on x,N=...

6 %$3.0f,imPDS=%6.5d, imDS=%6.5d',N,ui,uui))

7 kUU=abs (UU-prec); kU=abs (U-prec);max (kUU) , max (kU)

s kUUl=abs (UUl-prec); kUl=abs (Ul-prec) ;max (kUUl),h max (kUl)

60 figure

0 plot(x,kUl, 'r+',x,kUUl, '-', 'LineWidth', 2, 'MarkerSize', 3)

71 legend('FDSES', 'FDS')

72 title(sprintf('Error N=...

73 %2.0f,nFDSES=%6.5d, nFDS=%6.5d"',N, max (kUl) ,max (kUU1)))

4  figure

75 plot (x,kU, 'rx',x,kUU, '-', 'LineWidth', 2, 'MarkerSize', 3)

76 legend('FDSES-real', 'FDSreal')

77 title(sprintf ('Error-real N=...

78 %2.0f,nFDSES=%6.5d, nFDS=%6.5d"',N, max (kU) ,max (kUU)))

Using for first derivative «'(x;) the higher order approksimation
O(h*") we have following matrix representation (see sect. 1.6):
B=3[0,C1,C,...,C,0,0,... — Gy, —Cy 1, ..., —C2, —C1],

(n)*(=1)""!

m(n—m)!(n+m)!’
e =2 Y" | Cysin 220k,

We have following eigenvalues (k = 1,N):
Dn=1:p)=4sin(27k/N),

2n=2:pd = 2(2sin(2nk/N) — 15 sin(47k/N)),

3)n=3:pd =32 (3sin(2nk/N) — 35 sin(4nk/N) + 45 sin(67k/N)),

where C,, = m = 1,n. Then the eigenvalues are:
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Hyn=4:p)=2(%sin(2nk/N) — L sin(47k/N)+
To5 8in(67k /N) — 535 sin(87k /N)).
We added following operators by the MATLAB m.file ”PDSper1”

%$1k=4/h" 2% ((sin (pi*h*NT)) ."2 —-0.5*alfa*i*sin (2*pixh*NT));
1k=4/h"2* ((sin (pi*h*NT)) . "2+1/3% (sin (pixh*NT)) . 4 .
-0.5%alfaxi* (4/3*sin (2xpi*h*NT)-1/6*sin (4*xpi*xhxNT))); %4.ord
%$1lk=4*alfa/h" 2% ((sin (pi*h*NT))."2 *coth(alfa) -.

0.5%xixsin (2xpixh*NT)); %$2.order FDS Iljin

%$1k=4/h"2* ((sin (pi*h*NT)) . "2+1/3% (sin (pi*h*NT)) . 4 +.

8/45% (sin (pi*h%NT)) . “6+4/35% (sin (pi*h*NT)) . "8-.

0.5%xalfa*i* (24/15%sin (2xpi*h*NT) .

—2/5%sin (4*pi*h*NT)+8/105*sin (6*pi*h*NT)-1/140%sin (8*pixhNT))
%8.order, 1lk=4/h"2* ((sin (pi*h*NT)) . "2+ .

0.5%alfa*xix (3/2*sin (2xpi*h*NT)-3/10*sin (4*pixh*NT)+.
1/30%sin (4*pixh%NT))); %6.order

The calculations with MATLAB by L = P =a = 2,N = 40 give

following maximal errors:

8.6 1073(0(h?)),8.2 10~3(11jinF DS),1.24 10~3(0(h*)),2.60
1073(0(h®)), 1.2 1074(0(h®)),1.27 1075 (FDSES).

If a = 10, then

1.4 1072(0(h?)),1.0 10~%(11 jinFDS),3.7 103 (0(h*)),7.9
103(0(h%)),3.1 1073(0(h?)),3.0 10~3(FDSES).

Therefore, FDS with O(h*) is precised than FDS with O(h°) (see also

[2

2], [23)).

Sol.-real on x,N= 40,imPDS= 00000,imDS= 00000 x 10 Error-real N=40,nFDSES=1.43723¢-006,nFDS=8.15398¢~003

06
«  FDSES-real
——— FDSreal
- ®  prec.atr.

S R R S - SRR

-0
0

Fig. 1.10 Solution for a = 3,N = 40,L = Fig. 1.11 Errors fora=3,N =40,L=2,P =
2,P=2 2
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Solution on x,N= 40,imPDS=5.20797e-005,mDS=2.06865¢-015 Solution on x,N= 80,imPDS=3.83152¢-015,imDS=3.82513e-015

Fig. 1.12 Solution for a = 3,N = 40,L = Fig. 1.13 Solution for ¢ = 3,N = 80,L =
2,P=4 2,P=4

1.10 The conjugate operators with modified equations

We consider following boundary value problems

u (x) ‘f—azu(x) = —f(x),u(0) =u(L) =0,

{u”<x>+a2u<x> = —f(x),u(0) =u(L), ' (0) =u(L),
u” (x) —azu(x) = —f(x),u(0) =u(L) =0,

{u//(x) —a2u(x) =—f(x),u(0) = u(L),u'( ) = u'(L), (1.40)

where a is constant parameter.

1.10.1 The BCs with the first kind

The analytical solution of the problem (1.39) is

L

D O/ K(x,0)f(0)ds,

sin(ax)
sin(aL)

sin(a(L—x)) 1
sin(aL) asin(

u(x) = u(L) +u(0)

where K (t,x) is the Green function in following way:

K(t,x) = sin(ax)sin(a(L—1)), 0 <t <x,

= sin(at) sin(a(L—x)),x <t < L.

For (1.40) the form of the solution remained by replacing the trigono-
metrical functions with hyperbolical.
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Using discretization of (1.39) we have corresponding V. Bahvalov
FDS (M=N-1)

Ay=Ay=—(Yyu+a’y) = f(x),5(0) =y(L) =0,x; = jh, j=T1,M,
(1.41)

where y =( =% @ ), o0 =0.5ah.

This FDS is exact for linear function of f(x) = bx+ ¢, where b, c are

constants. In this case we have

u(x) = Cy sin(ax) + I”‘J’C?y, C) sin(px;) + bxéjc,
where C; = _sirllg(La_Z)Cam cos(ph) =1— “2;1/ = cos(ah) or p = a.

For the FDS with central differences y = 1.
The corresponding spectral problem is
AWF = ewk = w2 4 sin(kmw/2N)?>y —a?

w’; = \/;sm(nk]/N), k,j=1,M.

Every vector f of M order with the elements f;, j = 1,M we can be
expanded in the basis of eigenvectors
fi=yn lbksm”]l\(, by = NZ lfjsm”]\l;j
The solution of the boundary Value problem we can write in following
form:
Zk | Qg SIN —~ k ak

The solution of the spectral problem for the corresponding differen-

tial problem —w”' (x) = Aw(x),w(0) = w(L) = 0 is in following form:

Wwh(x) = \ﬂsm’m A= (k5)2 2.

b

Using the expression

f(x) =X5 bysin 2 b =2 2 [Lsin KEx dx,

we can the solution Wrrte in the form

ulx) =Y, 1aksinl%,ak = f{—’;

If f(x) =YK  csin®2 K < M, (c; are constant coefficients) then
FDSES method at least w1th M summands are exact methods, but FDS
is the method of the second order approximation

In this case the exact solution is u(x) = Y& _, ;L" sin ”fx

We can constructed the FDSES when in the representation A = WDW
the diagonal elements p; of matrix D are replaced with the eigenval-
ues A; from the differential problem.

For (1.40) we have similar expressions with (= -5 4 sin(km/2N)>y +

a?,
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— _ (kmy2 2
'}’—( sin}(lx(a))’kk_(fn> t+a.
Similarly we can consider following problem

Lu(x) = —(u" (x) + au' (x) — bu(x)) = f(x),u(0) = u(L) = 0. (1.42)

For the differential spectral problem

Lw(x) =—W"(x)+aw'(x) —bw(x)) = Aw(x),x € (0,L),w(0) =w(L) =
0

we obtain A = (1k/L)? +a? /4-+b,wk(x) = |/ % exp(—ax/2) sin(kzx/L),

e

wA(x) = /2 explax/2)sin(kmx/L).

(W) = [k (W (x)dx = 8, k=T,
The solution of (1.42) with the Fourier method can be obtained
in following form:

Fx) = X bk (x), b = (Wh, ), u(x) = X3y axwk (x), ap = by / e
In the discrete case we use corresponding A. Iljin FDS

Ay=—(Vyutayi—bx) = f(x),y(0) = y(L) = 0,x=x; = jh, (1.43)

where j = 1,N — 1,y = accoth(a), o = 0.5ah.

1.10.2 The periodical BCs

The analytical solution of the problem (1.39) is

L
1
=—— | K(t t)dt
) = ssiatazzay | KEDI0d,
0
where K(z,x) is the Green function in following way:

cos(a(L/2+1—x)),0<1<ux,
K(r,x) = {cosEaEL?Z-ﬁ-;—fg;a X Sttg L.

For (1.40) the form of the solution remained by replacing the trigono-
metrical functions with hyperbolical.
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We use the discretization of (1.39) with the V. Bahvalov FDS by
M = N — 1. The corresponding spectral problem Aw* = w* with the
circulant matrix A have following solution py = ;% sin(km /N)?y —a?,

wh = \/ b exp(mikj/N).wh; = \/ L exp(~2mikj/N). k.j = T..

The solution of the FDS Ay = f we can obtain by spectral method
in the real form. For vector f of N order with component f;, j = 1,N
using we have following expressions:

fi= Z*N2 (byecos NJ +b ssm%) + e boc
where by, = NZ _ 1 fjcos =5 2K by = NZ " fisin = 2”’” k=1,N,,
=25 cos(jm), Ny = 5, 5% Be= T3, B+ By
Slmﬂarly the solution of the discrete problem can be represented in
the following form:
= ZZZ% (ac cos NJ + ayg sin 27;\#) + %, where aj. = %:aks =
For the differential spectral problem

hie= (2mk/L). WA (x) = |/ exp(2mik/ L),

T

wh (x) = \/%exp(—Zﬂikx/L) = wk(x).

The solution with the Fourier method can be obtained in following
form:

J(x) = X5 (brccos znkx + by, sin 272"’“) + %7

where by = %fOLf( )COS Mdt bis =1 f()L f(t)sin %dt.

anx + ay, sin 272’”‘) + %

Therefore u(x) = Y7 (ak.cos
where a;. = %“,aks = %_
For (1.40) we have similar expressions with uy, = % sin(km /N)?y+

a2

'}’:( s1nh( ) ) M = (Tn)z—l—az'

1.11 Conclusions

The algebraical spectral problems for spectral represention of the
quadratic matrix A with the real different eigenvalues and eigenvec-
tors are considered.

The finite difference scheme with second order approximation (FDS)
and the boundary value problem for differential equation
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(1-D Poisson equation) —u” (x) = f(x),u(0) = u(L) = 0, are used.
For FDSES in the representation A = WDW, the diagonal elements
of matrix D are replaced with the eigenvalues A; from the differential
problem, where W, W, are the corresponding matrices of eigenvectors
(W, 1s the conjugate-transposed matrix of W). Then the matrix A is
not in the 3-diagonal form but this is full matrix.

We can construct the FDSES when in the representation A = WDW,
the diagonal elements 1, of matrix D are replaced with the eigenval-
ues A from the differential problem.

For the symmetric matrix A the matrix W is also symmetric and
WW = E A = WDW. The higher order FDS by periodical BCs also
are constructed.



Chapter 2
Mathematical models for heat transfer equation

We consider a simple model for description the process of diffusion
with PDE: we have an infinitely long tube divided into the following
fourth parts - two average parts S; ans S, are finite, but other two Sy, S3
are infinite [4] (see the Fig. 2.1).

= \ ) ) s
S (:ll S, L S, ) 3 =

Fig. 2.1 Model of diffusion

In the initial time t= O the average parts S; ans S, contain some
chemical solvent with the concentrations v, wg, but concentrations of
two infinite parts Sy, S3 are equal zero for every time moment. Diffu-
sion process begins for # > 0 and the velocity of the diffusion
between two parts is equal to difference of concentration. This process
is continuous in the time and discontinuous in the space. The unknown
functions are v(),w(¢) in the two parts Sy, S,. The concentration v(t)
in part S7 depends on diffusion in the boundary parts Sy and S,. The
velocity of this concentration is equal

d
d—::(w—v)+(0—v):w—2v.

Similarly the velocity of this concentration w(z) in Sy is

d
d—v:: O0—w)+(v—w)=v—2w.

55
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Therefore % = Au, where u(t) is the column-vectors of the second
order with elements v(¢),w(t), A is the matrix of the second order

A:<_12_12).

We have solution in the form u(t) = exp(Ar)ug, where ug is the
column-vectors of the second order with elements vq, wy.

The eigenvalues (-1, -3) characterize the solution depending on the
time

(exp(—t),exp(—3t)) and for t — oo we have u(r) = v(t) — 0.5(vo +
wo)exp(—t).

For obtaining the finite difference approximation for the heat transfer
equation ?9? = g—i;‘

the average domains S;,S> must be divided into small parts with the
length h =1/N.

Then we have the equation ¢ % = Au, where u(t) is the column-vectors

of N order with elements uy,...,uy and A is the 3-diagonal matrix of
N order
-210..00 O
1 1 -21..00 O
A=—=1| .. .. ...
2
Pl o 00.1-21

0 00..01 =2

We consider the linear initial-boundary heat transfer problem in the
following form:

oTt) _ 0 (RITd)y 4 f(x.1),x € (0,L),1 € (0,1),
90D 6y7(0,1) =0, T()( )L T (L,t)=0,1 € (0,17), (2.1
T(x,0) = To(x),x € (0,L),

where k > 0,01 > 0,0, > O(G1 + 62 # 0), are the constant parame-
ters, 7y 1s the final time, 7o, f are given functions (for boundary condi-
tions of first kind 0] = 0y = o).

We consider a uniform grid in the space x; = jh, j = 0,N,Nh=L.
Using the finite differences of second order approximation for par-
tial derivatives with second order of x we obtain from (2.1) the initial
value problem for system of ordinary differential equations (ODEs) in



2.1 The discrete problem: H. Kalis, S. Rogovs, 2011 [74] 57

the following matrix form

U(t) + kAU (t) = F (1),
{UEE))):UO,U) (7) 2.2)

where A is the 3-diagonal matrix of N + 1 order, U(t),U(t), Uy, F (t)

are the column-vectors of g\/ (+ 1) order with elements
. T(xit :
Mj(l)%T(Xj,l»,Mj(t)% axt] ,M](O):U0<X]),f](t):f(xj,[>,]:

O,N.
The solution of the spectral problem for difference operator A is
described in chapter 1.

2.1 The discrete problem: H. Kalis, S. Rogovs, 2011 [74]

We can consider the analytical solutions of (2.2) using the spectral
representation of matrix A = WDW (see chapter 1) . From transfor-
mation V = WTU (U = WV) follows the seperate system of ODEs

{ V(t)+kDV(t) = G(t),

V(0) =WTU,, (2:3)

where V(¢),V(t),V(0),G(t) = WT F(t) are the column-vectors of M
order with elements vy (), v (), v (0),gx(t)k = 1,M.
The solution of this system is the function

wl0) = (O exp(—xi) + [ exp(—kilt —D)au(DdT. @)
0

where K = k.

The matrix A from (2.2) (M = N + 1) have the first and last rows in
the form:

h2(2+201h —v/2..00); h=2(0 0... —v/2 2+200h).
Therefore the first and last equations of (2.2) are valid when the first
and last components of vector AU are divided with /2.

Note 2.1. In (2.2) for M = N + 1 the first u;(0), fi(¢) and last uys(0),
fu(t) components of vectors Uy, F(t) are divided with v/2, but the
components u; (), up () of the solution vector U(z) in (2.3) need to
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multiply with v/2; for M = N the above-mentioned can be apply to
first (0, = o) or last (0] = o) component for vectors U, F.

2.2 The linear equation with the BC of the first kind

The analytical solution of heat transfer problem (2.1) by k = L =
1,f=0,Ty = 1,01 = 0» = oo (the first kind BC) with discontinuous
initial and boundary data can obtain from following Fourier series:
Tty = 2 ¥ L exp(—(2i+ 1)22%) sin((2i + 1))
’ m e 2i41 ’

The corresponding solution with FDS (2.2) is in the following form:
U(t) = Wexp(Dt)WU,,

where Uy is the column vector with ones,

the diagonal matrix D contain the discrete eigenvalues

e = 75 sin* (1) k=T, N—1.

For the FDSES the elements of matrix D are replaced with the first
N — 1 continuous eigenvalues A; = kzL—’zrz The maximal error by t =
0.02,N =10 1s 0.089 for FDS and 0.0102 for FDSES. The results ob-
tained with Fourier series contain on x = 0,x = L oscillations (Gibbs
phenomenon). For FDSES method these oscillations disappear. The
maximal error by r = 0.9, N = 101s 0.0000118 for FDS and 0.0000015

for FDSES. We have following MATLAB m.file Siltm1:

1 %system ODE U_t+ AU=0 with first kind hom. BC
2 %t=Tb,u(x,0)=1;u(0,t)=u(L,t)=0

3 function Siltml (N)

4 NI1=N+1;MK=2;Tb=0.9;L=1;x=linspace(0,L,N1)';
5 t=linspace (0, Tb,MK) ;

¢ h=L/N;N2=N-1;x=x(2:N);MF=100;

7 NT=0.5%(1:N2)'/L;

s lk=4/h"2% (sin(pi*h*NT))."2; %0(h"2}

9 Ck=sqrt (2xh/L);

10 1k0=((1:N2) '*xpi/L)."2;

11 d=1k0; %FDS or FDSES

12 W=Ck#*sin(pix (1:N2) '+x'/L);

13 A2=Wxdiag (d) *W;
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14 yl=ones(N2,1); % init-cond
15 P=zeros(N2,1);P=Wxyl;Pl=zeros (MK, N2);
16 for k=1:N2

17 b=d(k); %FDS or FDSES
18 P1l(:,k)=exp(-bxt') *P (k) ;
19 end

20 P2=(WxP1')';
21 P21=Wxdiag(exp (—d*Tb) ) *Wxyl; $okei !
2 nM=2x[1:MF]-1;

23 eM=exp (- (pi/L) "2*Tb*nM. “2) . /nM;

2 up=4/pi*sin (pi*x*nM)xeM'; $Fourier

25 Mal=max (abs (up—-P21) ) ; M=max (abs (P2 (end, 1:N2) '-up) ) ;
% figure,plot (x,P21, 'ko',x,up, '*',x,P2(end,1:N2), '-")

27 grid on

23 legend('MATLAB', 'Fourier', 'Analytic')

2 title(sprintf('Sol.an.on x by errl=%$9.7f,err=%9.7£f',Mal,M))
30 xlabel('\itx'), ylabel('\itu')

31 Xl=ones (MK, 1) *x';Yl=t'*ones(1l,N2);

2 figure, surfc(X1l,Y1l,P2)% error anl.

33 colorbar

34 xlabel('x'), ylabel('t'), zlabel('u')

335 title(sprintf('an.sol., max errl.=%9.7f,err=%8.7£f',Mal,M))

If the functions f(x,t),Ty(x) are proportional to the eigenvector
wp(x) = /2/Lsin(zpx/L), F(x,1) = g(t)wp(x), To(x) = agw (x),
then the solution we can obtained in the form
T (x,t) = y(t)w,(x), where for function y(¢) follows the ODEs
$(t) = —kApy(t) +g(t) with ¥(0) = ag, A = (%2)>.

We have the exact solution
¥(t) = exp(—FApt)ao + [y exp(—KAy (e — E)g(E)dE

From Fourier series 7 (x,1) = Y. ar(t)wi(x), £ (x,1) = X0 bi(t)wi(x),
bi(t) = (f, W)+, follows ODEs: ay(t) = —kAza(t) + by (t)
with a;(0) = (To, wi)«, A = (”Tk)2
We have following solutions
a(t) = exp(—kAt)ar (0) + [ exp(—kA(t — )by (€)dE.

From orthonormal eigenvectors follows, that
bp(t) = g(1),ap(0) = o, by (1) = @i (0) = 0,k # p and ay(1) = y(1).

From the discrete case (FDS) the solution of the matrix equation
(2.2)1s
U (1) = exp(—KIA)U (0) + foexp(—RA(r — &)F(E)dE.

Using the matrix A representation A = WDW and transformation
V = WU follows that for every matrix function f(A) = W f(D)W

and V = exp(—ktD)V (0) + [ exp(—kD(t — £)G(&)dE.

Therefore we have the solution in the form (2.4).

If p <N —1, then the components v (0) = (WU(0) ) = ijz_ll wlj‘.To (x;) =
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We get v,(0) = \‘;—%,gp(t) = %,vk(O) = gx(t) = 0,k # p and from
(2.4) follows v, (t) =

- (exp(—kitgt)ao -+ i exp(— ity (1 — E)g(E)dE) vi(e) = 0,k # p.
For FDSES from U =WV, w’]‘. = v/hwy(x;) and replacing the discrete
eigenvalue i, = %(sin 7:2_pLh)2

with A, we obtain the exact solutions 7' (x;,t) = y(t)wp(x;),j = O0,N.

2.3 The nonlinear equations: H. Kalis, I. Kangro et al., 2009 [1]

We shall consider the initial-boundary value problem with
01 = 02 = o for solving the following nonlinear heat transfer equa-
tion:

oT  9%(g(T

Sy % +f(T),T(0,¢) =0,T(L,t) =0,T(x,0) = Tp(x),
(2.5)

where g(7T') is nonlinear continuously differentiable function with

g—§ =¢'(T) >0,T =T(x,t) f(T) is nonlinear continuous source func-

tion. For the power functions

g(T) =T ,¢/(T) = (o + )T, f(T) = aT?,

a>0,8>1,0>0,follows T(x,t) >0 forall t > 0, if Ty(x) > 0.

From T (0,7) = T(L,t) = 0 follows that 7’(u) = 0 by x = 0;x = L and

the solution of the problem (2.5) is not classical.

In paper [5] is proved that

1) by B < 0 + 1 exists global bounded solution for all 7,

2) by B > o + 1 exists global bounded solution for sufficient small

|| Tol,

but for larger ||Tp||, exists finite value T, when u(x,t) — o ift — T,

("blow up” solutions)

The initial value problem (2.2) is in the vector form

U +AG = F,U(0) = U, (2.6)
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where A = PDP is the standard 3-diagonal matrix of N — 1 order with
elements hlz{—l;2; —1},

G,F are the vectors-column of N — 1 order with elements g, =
g(u(-xkvt))7fk = af(u(x/ﬁt))? k= laN_ 1.

The numerical experiment with L = 1 and Tp(x) = x(1 —x) > 0,

is produced by MATLAB 7.4 solvers “ode23s” for different value of
o and B [1].

For example by a =5,0 =B =3,(f <o+1),r =10,N =6,10,20
are obtained following maximal error with FDS and FDSES methods:
1) N =5—--0,0125(FDS),0.0011(FDSES);

2) N = 10— —0.0046(FDS),0.0003(FDSES);

3) N=20——0.0013(FDS),0.0001(FDSES).

Figs. 2.2, 2.3 we can see two type solutions for three time moments
(t=0,t=T1,t =T2>T1),by 6 =3 depending on

the parameters 3, a, obtained with the FDSES method (N = 80):

1) B=4(B =0+1),a= 12, the solution T'(x,7) — oo globally for all
x € (0,1), when t — T, < oo ( T is finite value of time, this is global
“blow up” solution),

2) B=5(B > o+ 1),a =50, the solution u(x,t) — oo locally neigh-
bourhood of point x = 0.5, when ¢t — T, < o (for finite value of T,
this is local ”blow up” solution).

beta=4.0,sigma=3.0,a=12.000,T1 = 17.800000, T2 =17.813000 beta=5.0,sigma=3.0,a=50.000,T1 = 16.018700, T2 =16.018780
20

Fig. 22 U — o for x € (0,1), B = 4,0 = Fig.23 U »ooforx=0.5,=5,0=3,a=
3,a=12,T, = 17.813001 50,7, = 16.018781

From following MATLAB m.file ’nellabDS”’ we can obtain the so-
lution with the solver ”odel15s” by B =5, 0 =3,a=15.
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%$solutions of ODEs system $dU/dt=AU"{sigmal}+ a U"{beta},
%$t=Tb, A =WDW is the matrix with the best appoximation,
% sigmal=sigma+l

function nellabDS (N)

sigmal=4;beta=5;a=15;Tb=20;L=1;

N1=N+1;N4=N/2+1; x=linspace(0,L,N1)';h=L/N;N2=N-1;
W=sqrt (2/N) *sin (pi/N* (1:N2) '% (1:N2));
A=-Wxdiag ((pi/L* (1:N2)')." 2)*W;

x=x(2:N);

y0=x.* (L-x);

options=odeset ('RelTol', 1.0e-7);

[T, Y]=odel5s (@SIST, [0 Tb],y0,options,A,6sigmal,beta,a);
plot ([0;x;L], [0;Y¥(end, :)';0], 'kx', 'MarkerSize', 8)

grid on

title(sprintf('time = %8.6f Y(Tb,N/2))=%9.7f '.
,T(end),Y(end,N4)))

xlabel('x'), ylabel('u')

figure

plot (T(:),¥(:,N4), 'LineWidth', 3)

title(sprintf ('DV lab.aproks.DS,N=%3.0f

time = %8.6f Y(Tb,N/2))=%9.7f ',N,T(end),Y(end,N4)))
xlabel('t'), ylabel('u')

function F=SIST(t,y,A,sigmal, beta, a)

F=A*x(y." { sigmal})+axy.” {betal};

The results of the calculations with the operator ” nellabDS(20)”

are represented in the Figs. 2.4, 2.5 (U, = 2021.33).

DV lab.aproks.DS,N= 20 time = 0.027797 Y(Tb,N/2))=2021.3348709 time = 0.027797 Y(Tb,N/2))=2021.3348709
2500

2000 : : : : 4 2000 *.

1500 ! 1500

1000 4 1000

500 4 500

VRSN kg% ow ok

0 0.005 0.01 0015 0.02 0.025 0.03 02 0.4 06 o8
t x

Fig. 2.4 max(U) depending on ¢ by fB = Fig. 2.5 U depending on x by f = 5,0 =
5,0 =3,a=15,T, =0.027797 3,a=151=T,

2.

4 Dynamic of magnetic droplet: A. Cebers, H. Kalis, 2013 [75]

The droplet’s axial tangent angle 3 can be described by a nonlinear
PDE parabolic type with the BC of first kind [11]
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B _ 9*
ar  Ix?

where Bm is the magnetic Bond number, @7 is the frequencies,
the nonlinear function F(f) = z-B + sin(2f) is not monotonic for

Bm larger than % (see Fig. 2.6).

The problem (2.7) is noncorrect for F/'(f8) < 0 and the solution is dis-
continuity for § > B,

where F'(,) = 0. For steady state, equation (2.7) with boundary con-
dition posseses a simple solution

F(B) = %5(1 —x?) (see Fig. 2.7).

The figures are obtained with following MAPLE file cebst.mws:

> restart: b:=1.5: a:=5.: c:=1.:
plot(u/b+sin(2*u)*c,u=0..3,thickness=3,color=black);

with(plots): fsolve( u/b+sin(2*u)=1., u=0..1);
implicitplot(u/b+sin(2*u)*c=a/2.*(1-x*x), x=-1..1, u=0..8, thickness=3,
color=black);

F(ﬁ)+wraﬁ(07t) = ﬁ(L’t) = O?B(xa0> = ﬁO(x)a (2.7)

03]
0,61
04

0,24

0

T T . f T
0 1 2 3 -1,0 -0.5 0 05 1,0

Fig. 2.6 Function F(f3)by Bn=1.50t=>5 Fig. 2.7 Stationary solutions F(f3) by Bm =
1.5,0T=>5

The MATLAB m.file ceblabDS is following

%PDE system dU/dt=wt+AF (U) ,F (U)=U/Bm +sin (2%U)

$Tb—end time, A =-WDW transf. x=1+1

function ceblabDS (N)

Tb=3;L=2;wt=5;Bm=1.5;

M1=10;N1=N+1;N4=N/2+1; x=linspace(0,L,N1)';h=L/N;N2=N-1;M=M1-1
t=linspace (0, Tb,M1); tau= Tb/M;

= T S O CR S
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W=sqgrt (2/N) *sin (pi/N* (1:N2) "% (1:N2));
A=-Wxdiag ((pi/L* (1:N2) ') ."2)*W; %FDSES
$A=-Wxdiag(4/ (h"2) x (sin(pi/Lxh/2% (1:N2) ') ."2))*W;% FDS
x=x(2:N) ;
y0=zeros (N2,1);
options=odeset ('RelTol', 1.0e-7);
[T,Y¥]=odel5s (@SIST, [0,Tb],y0,options,A,wt,Bm) ;% Mat.solvers
%[T,Y]=ode23s (@SIST, [0,Tb],y0,options, A, wt,Bm);
%[T,Y¥]=ode23t (@SIST, [0, Tb],y0,options,A,wt,Bm);
%[T,Y]=ode23tb (@SIST, [0,Tb],y0,options, A, wt,Bm);
%[T,Y]=oded5 (@SIST, [0, Tb],y0,options, A, wt,Bm);
%[T,Y]=0ode23 (@QSIST, [0,Tb],y0,0options,A,wt,Bm);
%[T,Y¥]=0odell3 (@SIST, [0,Tb],y0,options,A,wt,Bm);
ym=max (Y (end, :));
figure,plot (T(:),Y¥(:,N4))% Max dep. on t
grid on
title(sprintf('dep on t,N=%3.0f,wt=%2.0f,Bm = %4.3f,
Y(Tb,N/2))=%9.7f ',N,wt,Bm, Y (end,N4)))
xlabel ('\itt'), ylabel('\itu')
K=length(T);
Xll=ones (K, 1) *x';Y11=T*ones (1,N2);
figure, surfc(X11l,Y11l,Y¥(:,1:N2)) % sace graf.
colormap (hsv)
colorbar
xlabel('x'), ylabel('t'), zlabel('u')
title(sprintf ('Surf.,tNr.=%4.1f,wt=%3.0£f, Bm=%4.3f',K,wt,Bm))
% Begin of animation
for k=1:M
options=odeset ('RelTol', 1.0e-7);
[T, Y¥]=odel5s (@SIST, [taux (k-1), tauxk],y0,options,A,wt,Bm);
y0=Y(end, :);
T1 (k) =T (end) ;
X1(k,:)=Y(end, :);
end
for k=1:M
figure,plot ([0;x;L], [0;X1(k,:)"';0], 'ko')% max dep. on x
grid on
title(sprintf('dep. on x,wt=...
%$2.0f,time = %8.6f, Bm=%4.3f ',wt,T1l(k),Bm))
xlabel ('\itx'), ylabel('\itu')
M2 (k) =getframe;$ animation
end
movie (M2,10)
for k=1:M
X=X1(k, :);
cx(1)=0;cy(1)=0; for kl=2:N2
cx (kl)=cx(kl-1)+h/2* (cos (X (k1l-1))+cos (X(k1l)));
cy (k1) =cy(kl-1)-h/2* (sin (X (k1l-1) ) +sin(X(k1l)));end
% the actual shape of a droplet
cl=0; c2=0;
for kl=2:N2
cl=cl+h/2* (ex(kl-1)+cx (k1)) ;
c2=c2+h/2* (cy (k1-1)+cy (k1)) ;
end % the centre of gravity
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61 cx=cx—-cl/2; cy=cy-c2/2;

2 figure,plot (cx,cy,'-', 'LineWidth',64)% trajekt.

63 title(sprintf ('Figures,wt=%3.0f,Bm=%4.3f',wt,Bm))
o« M2 (k)=getframe;

s end

6 movie (M2,10)

67 function F=SIST(t,y,A,wt,Bm)

6s F=wt+Ax (y/Bm+sin (2xy));

In this programm the actual shape of a droplet in the plane &, y found
by numerical integration (trapezoid formula) of the differential equa-
tions i e

X y _ .
=~ cos(B), - = —sin(B),
with the centre of gravity. We can work out the filmed procedure

by following MATLAB operators

1 mov=avifile('wwtrenl.avi', 'compression', 'Cinepak');
> for kO0=dK:dK:KO0

3 X=Y(kO, :);

4 ¢cx(1)=0;cy(1)=0;

s for kl=2:N2

6 cx (kl)=cx(kl-1)+h/2% (cos (X (k1l-1))+cos (X(k1l)));
7 cy (k1) =cy (k1l-1)-h/2* (sin (X (k1l-1) )+sin (X (k1)));
8 end

9 ¢l1=0;c2=0;

10 for kl=2:N2

1 cl=cl+h/2x (ecx(kl-1)+cx(kl));

12 c2=c2+h/2x (cy (k1-1)+cy (k1)) ;

13 end

4 cx=cx-cl/2; cy=cy-c2/2;

15 hf=figure;

16 plot(cx(:),cy(:))

17 axis([-1 1 -0.6 0.6])

18 print (hf, '-dbmplém', 'temp. jpg');

19 [temp color]=imread('temp.jpg') ;

20 mov = addframe (mov, im2frame (temp, color));

21 close (hf);

» end

23 mov = close (mov);

where K = length(T),dK = fix(K/M),KO = dK « M.
The solution are obtained with MATLAB operator ceblabDS(40)
by L=2,Bm=1.5,0T =5,y =3 ( see the Figs. 2.8-2.15).
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2.5 The hysteresis: A. Cebers, H. Kalis, 2012 [26]

As a result the existence of the multiple stationary states of the droplet
in definite ranges of the frequency of rotating field and therefore hys-
teresis phenomena are predicted.

2.5.1 Mathematical model

In [11] is general form of PDE (2.7) consider

9 PF() P

OT=or T o fauar

(2.8)

where ¢ is a small coefficient (about 1074,/ = x).

The regularization term in (2.8) is added from physical considerations.
The equation (2.8) is supplemented by boundary conditions
corresponding to the absence of normal forces and torques at the ends
of the droplet.

The last term in the equation (2.8) is used for the regularization of the
numerical calculations.

By setting € = 0 we obtain the following problem (2.7), where 3(/,0) =
Oo(!) is the initial conditions in the time t = 0.

2.5.2 Solution of the problem

In [11] the numerical solution of (2.8) is obtained by an implicit
scheme with the spatial derivatives approximated with central
differences. The nonlinear term with the function F(f) is resolved
by Newton iterations at each time step. Numerical method for the re-
duced problem (2.7) shows instabilities.

The stationary solution f3;(!) with the boundary conditions 3 (+1,7) =
0is F(Bs) =0.5mt1(2—-1).

The maximal value fB,, is the solution of the transcendental equation
F(Bn) =0.50T7.

The solution (B(Z,7) > 0) is symmetrical with a respect to/ =1 :
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B(1—1,1)=B(1+1,1),0 € (0,1) or 2ELL) — ¢,

The angle 8 as function of the arc length variable [ is discontinuous
for 0t = 2F(fy), where

Bo are the roots of equation F'() = 0 (the local maxima or minimum
of the function F(f3)).

The values w, = (w71)g = 2F (fy), define the critical frequencies.

Discontinuity of f variation along the droplet at Bm > 0.5 is de-
scribed by the modified functions F(f3) defined as follows.

For the path with increasing frequency of rotating field (direct func-
tion) F(f) = F(u) is defined as follows (see Fig. 2.30 for Bm = 1.5):
1) F(u) = g-u+sin(2u),u € [0,u],
where u; = £ —0.5arccos(0.5/Bm), is the first local maxima of func-
tion F (u) or the solution of the equations F'(u1) = 5~ +2cos(2u;) =
0,

2) F(u) = F(uy) = F,u € [u,u],

where uy is the solution of the transcendental equation F(u) = Fj at
the interval (uy,us3),us = 37” —0.5arccos(0.5/Bm),

3) F(u) = ﬁqusin(Zu),u € [up,us],

4) F(u) = F(u3) = F3,u € [u3,us], where uy is the solution of the
transcendental equation F(u) = F3 at the interval (u3,us),us = 57” -
0.5 arccos(O.S/Bm),

5) -

Therefore in the segment [up;_1,uz],k=1,2,--- the function F(u) is
replaced with line segment F(u) = F(uy_1) = Fr_1,

where uy;_1 = M —0.5arccos(0.5/Bm) are the local maxima of
the function F(u).
The ends of the segment uy;_ 1, uy; satisfy following conditions:
ugp—1 = w1+ (k— D) muy = up + (k— 1),k =23,
The maximal value of F(uy;_1)is equal For 1 = F1+ (k 1) 4, where
Fy =F(u).
From F'(uy) = F'(u2),F'(0) = 2+ 5 follows that F’(uy,) < F'(0).
The critical frequencies w(k) are defined by wc.(k) = 2Fy_1,k =
1,2,

For the path with decreasing frequency of the rotating field reverse
function F(B) = f(u) is defined as follows
(see Fig. 2.31 for Bm = 1.5):
1) f(u) = g=u+sin(2u),u € [0, 5], v1 is the solution of the transcen-
dental equation
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f(u) = fi at the interval (0,u; ), where f; = f(v;) is the value of the
minimal value of function f(u),
the local minimum is the solution of the equations f’(u) = 0 in the
segment [u],u;],
2) f(u) = f(v1) = fi,u € [va,v1],
3) f(u) = g-u+sin(2u),u € [v1,v4], where vy is the solution of the
transcendental equation
f(u) = f3 at the interval (uy,u3), where f3 = f(v3) is the value of the
local minimum of function f(u)
or the solution of the equations f’(u) = 0 in the segment [u3, u4],
4) f(u) = f(V?,) = f3,l/t € [V4,V3],
5) ...
Therefore in the segment [vog, vor_ 1],k =1,2,---
the function f(u) is replaced with line segment f(u) = f(vor_1) =
Jok-1,
where vy = w +0.5arccos(0.5/Bm)
are the local minimum of the function f(u). The ends of the segment
Vok—1,V2x satisfy following conditions:
Vog—1 = V1 +(k— 1)7T;V2k =vy+ (k— 1)7[,/(2 2,3, v =T —uj.
The minimal value of f(ua,—1)is equal fo—1 = fi + (k— 1) 5, where
Ji=f(n).
The critical frequencies w. (k) in this case are defined with the
expression w(k) = 2fox_1,k = 1,2,--- The stationary shapes con-
structed according to modified functions are shown in Fig. 2.32 (direct
function) and Fig. 2.33 (reverse function).
It is interesting to remark that the curvature of the droplet between the
seps of the tangent angle has opposite signs for the cases of direct and
revers% zf#nctions. ,
From %2 = F"(u)(24)? + F' () 2% = — o1
follows that 24 < 0 if F”(u) > 0.

In the segments @7 € [2Fy;_1,2fo_1],k=2,3,--- we have two sta-
tionary solutions, but
in the segments 07T € (2F_1,2fo+1),k = 2,3, the solution is
unique ( F'(u) > 0).
An example, at Bm = 1.5 (see Figs. 2.30, 2.31) we have
following maximal value max(fs(l)) = Bs(1) for different value of
0T:
o7 = 2(0.4078;2.6858), ot = 3(0.7531,2.9128),
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07 = 2F;(0.9485,2.9448);
07 =1(0.1910), ot = 4(3.1062), @t = 5(3.2955),
07 =8(6.2122), T = 12(9.3180), ot = 15(9.4940).

The modified functions F(f) are monotonic (0 < F'(B) <2+ 5-)
and we can obtain that for fixed time # the solution 3(/,7) is
quadratically integrable together with their first order generalized par-
tial derivatives with a respect to /.

If £ = 0,8 = 0, then from (2.8) follows that 229 — gz > 0 and the
function B is increasing in time.

For modified function F(f3) we can prove that the weak solution for
0

fixed 7 is bounded in the norm of Sobolev space W,
and the problem (2.8) is uniquely soluble. Similarly results can be
obtained for equation (2.7).

The problems (2.7, 2.8) are solved by the MATLAB “solver ode15s”
with relative error 107 (RelTol=10""7),
using the method of lines and finite difference method for
the approximation of the spatial derivatives. We consider the uniform
grid in the space [; = jh,j=0,N,Nh=L.
Using the finite differences of second order approximation for partial
derivatives of second and fourth order with respect to [,
from (2.8) with boundary conditions on the ends of the droplet
B = 0 we obtain the initial value problem for the system of nonlinear
ordinary differential equations (ODEs) of the first order
in the following matrix form

G,

{ (E+€eB)U(t) +AF(U(1)) (2.9)

U(0) =0,

where E is the unit matrix of N — 1 order,

A 1s the standard 3-diagonal matrix of N — 1 order with the elements
hiz {—1;2;—1} approximating the derivative — 3—122,

B is the 5-diagonal matrix of N — 1 order with the elements
%{1;—4;6;—4; 1}

. . T 94
approximating the derivative 57,
(the first and last elements of matrix Bare B(1,1) =B(N—1,N—1) =
5/h*, by using following finite difference expressions
ur(t) =un(t) =0,uo(r) = —uz(r),un+1 = —un—1
for approximation of the boundary conditions of the equation (2.8))
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U(t),U(t),Uy, F(U),G are the column-vectors of N — 1 order with the
elements u;(t) ~ B(l},1),
. IBL;, R —
(1) ~ P25 1j(0) = 0, fj = Fuj(1)),8; = 07, j = TN 1.
It is obvious that B = A2. In book [28] for solving physically unsta-

ble retrospective problem of the linear heat transfer equation at PDE
4

(2.7) is added the regularization term 8%—4[; or €BU(t) at the ODEs
system (2.9).
From (2.9) we obtain the initial value problem at € = 0.

2.5.3 Numerical results

Constructed direct and reverse functions allow us to calculate the dy-
namics of shapes corresponding to the path with increasing

the frequency of rotating field staring from straight configuration and
the reverse path starting from the deformed shape calculated by using
direct function.

The dynamics of the tangent angle and corresponding shapes formed
in direct path for different frequencies of rotating field are shown in
Figs. 2.34-2.41.

We remark the formation of highly spiralized shapes at large frequen-
cies of the rotating field (see Figs. 2.39, 2.41).

Relaxation of the tangent angle and the droplet shape obtained
using the reverse function is shown in Figs. 2.16-2.23.

Figs. 2.17, 2.20 show a step-like behavior of the maximal tangent an-
gle during the relaxation to the straight configuration which charac-
terizes the disappearance of the jumps of tangent angle.

Main result of the paper is shown in Figs. 2.25-2.29. In this case
shape obtained by reverse function straing from the stationary
configuration obtained by using direct function at higher frequency
is different from the configuration obtained at the same frequency by
direct path.

So shapes obtained at @7 = 2 by direct and reverse paths are different
(Fig. 2.24).

The same is valid for wt = 6 (Fig. 2.26) and w7 = 10 (Fig. 2.28).
The tangent angle for these frequencies is shown in Figs. 2.25, 2.27,
2.29.

Direct function F(u) at Bm = 1.5 and with the following numerical
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values are shown in Fig. 2.30:
up =0.9553,u, =2.9448,u3 =4.0969, uy = 6.0864,us =7.2385, us =
9.2280,F, = 1.5797,F; = 3.6741,F5; = 5.7685,F'(0) = 2.6667.
In Fig.2.30 with the fixed points () are denoted the values of ®7 with
the coordinates (fs(1), 07/2).
Reverse function F (1) at Bm = 1.5 and with the following numerical
values are shown in Fig. 2.31:
vy =2.1863,v, =0.1968,v3 = 5.3279,v4 = 3.3384,v5 = 8.4695,v¢ =
6.4800, f1 = 0.5147, f3 = 2.6091, fs = 4.7035.
In the fixed points () are the values of w7 with the coordinates
(B,(1), @7/2).

Thus the considered model predicts multiple stationary states of the
droplet in definite ranges of the frequency of rotating field.
It would be interesting to confirm this prediction in experiment. Here
we should remark that available experiments [16] indeed show the for-
mation of the shapes with discontinuity of tangent angle which breaks
at places with large curvature.
The breaking phenomenon is not described by the present model.

2.5.4 MATLAB programm

I %system ODE dU/dt=wt+AF (U)+ae Bl dU/dt,
2 %F(U)=U/Bm +sin (2xU) with Matlab solvers
3 %Tb—end -time, A =-WDW finite-difference matrix of FDS or FDSES
4+ S%transf.x=1+1 [0,2], hom. BDs,

5 %dynamic of filament (0=>10=>12=>10,N=100)

¢ function cebexpl (N)

7 Tb=6;L=2;wt=10;Bm=1.5;ae=10" (-4); %epsilon in ODEs, initial wt
s M1=4;N1=N+1;N4=N/2;

9 x=linspace(0,L,N1)';h=L/N;N2=N-1;M=M1-1;

10 bb=0:0.01:10;F=bb/Bm+sin(2xbb); % for F(u) plot

11 figure,plot (bb,F, 'k-', 'LineWidth', 2)

12 grid on

13 title(sprintf ('The function F,Bm = %4.3f',Bm))

14 xlabel('\it \beta'), ylabel('F')

15 W=sqrt (2/N) *sin (pi/N* (1:N2) '« (1:N2));% matrix of eigenvectors
16 %$A=-Wxrdiag ((pi/L*(1:N2)"')."2)*W; %FDSES

17 A=-Wxdiag(4/ (h"2) *x (sin(pi/L*h/2% (1:N2) ') ."2))*W;% FDS of O(h"2
18 x=x(2:N);

19 yO=zeros(N2,1);%initial cond.for direct path wt=0=>10

20 Bl=zeros (N2,N2);

21 Bl=Bl+6xdiag(ones (N2,1))-4xdiag(ones (N2-1,1),-1)- ...
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2 Mathematical models for heat transfer equation

4xdiag(ones (N2-1,1),1)+...

diag(ones (N2-2,1),2)+diag(ones (N2-2,1),-2);

B1l(1,1)=5;B1(N2,N2)=5;

Bl=Bl/(h"4) ;% matrix of 4-order deivatives or Bl=A"2

El=eye (N2);

options=odeset ('RelTol', 1.0e-7);

[T,Y¥]=odel5s (@SIST, [0, Tb],y0,0options, A, wt,Bm,B1l,E1,h,ae);

% wt=0=>10

%[T,Y]=oded5 (@SIST, [0, Tb],y0,0options,A,wt,Bm,B1l,El,h,ae);

ym=max (Y (end, :))

K=length (T)

figure,plot (T(:),¥(:,N4), 'k-', 'LineWidth',2)% Max val.dep. t

grid on

title(sprintf ('Beta-max on t,wt=%2.0f,Bm =%2.1f, .

eps=%5.2d, ymax=%5.4d"',wt,Bm, ae,ym))

xlabel ('\itt'), ylabel('\it \beta_ {max}')

figure,plot ([0;x%;L]',[0;Y¥(end,:)';0]"', 'k—.", 'LineWidth', 2)

axis ([0 2 0 6])

xlabel('1'), ylabel('\beta')

title(sprintf ('Beta ,wt=%2.0f,Bm=%2.1f,eps=%5.2d, .
ymax=%5.4d',wt,Bm,ae,ym))

y0=Y(end, :) ';wt=12;% next wt and new in-cond. wt=10=>12

y00 (1, :)=y0;% values of beta(x,Tb) by wt=10 (direct path)
[T, Y]=odel5s (@SIST, [0, Tb],y0,options,A,wt,Bm,B1l,El, h, ae);

$ wt=10=>12

%[T,Y]=oded5 (@SIST, [0,Tb],y0,0options,A,wt,Bm,B1l,El,h,ae);

ym=max (Y (end, :))

y0=Y (end, :) ';wt=10;% next wt and new in-cond.for wt=12=>10
[T, Y¥]=odel5s (QSIST, [0, Tb],y0,options,A,wt,Bm,B1l,El, h, ae);

y00(2, :)=Y(end, :);% values of beta(x,Tb) by wt=10 (opposite)
$figure,plot (T(:),¥Y(:,N4), 'k-', 'LineWidth',2)% Max depends on

%grid on

$title (sprintf('Beta-max on t,wt=%2.0f,Bm =.
%$3.1f,eps=%5.2d, ymax=%5.4d',wt,Bm, ae,ym))

$xlabel ('\itt'), ylabel('\it \beta_{max}')

hold on

plot ([0;x;L]"',[0;Y(end,:)"';0]', 'k——", 'LineWidth', 2)

axis ([0 2 0 10])

xlabel('1'), ylabel('\beta')

legend('Direct', 'Opposite’)

title(sprintf ('Beta ,wt=%2.0f,Bm=%2.1f,eps=%5.2d',wt,Bm, ae))

K=length (T)

Xll=ones (K, 1) *x';Y11=T(1:K) *ones (1,N2);

figure,surfc(X11,Y11,Y(1:K,1:N2)) % 3D graphics

colormap (hsv)

colorbar

xlabel('x'), ylabel('t'), zlabel('u')

title(sprintf ('Beta surf., tf=...

%4 .3f,wt=%3.0f, Bm=%4.3f',Tb,wt,Bm))

%$begin of dynamics

dK=£fix (K/M) ; KO=dK*M; YY=zeros (K0, N1) ; XX=zeros (1,N1);

CX=zeros (K0,N2) ; CY=zeros (KO, N2) ;

dKO=fix (dK/2) ;

t£00=T(1),t0=T(dKO) ,t1=T (dK), t2=T (2+dK) , t3=T (KO)
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The hysteresis: A. Cebers, H. Kalis, 2012 [26]

$for kO0=[1,dK, 2xdK,KO0]
%$YY(kO, :)=[0;Y(k0,:)';0];% for dynamics
$X=Y (kO, :);
for k0=1:2
YY(kO, :)=[0;y00(kO0,:)"';0];
X=y00 (kO0, :);
cx(1)=0;cy(1)=0;
for kl=2:N2
cx (kl)=cx(kl-1)+h/2* (cos (X (k1l-1))+cos (X(k1l)));
cy (k1) =cy (k1l-1)-h/2* (sin (X (k1l-1) )+sin (X (k1)));
end
cl=0;c2=0;
for kl=2:N2
cl=cl+h/2x (ex(kl-1)+cx (k1)) ;
c2=c2+h/2* (cy (k1-1)+cy (k1)) ;
end
cx=cx—-cl/2; cy=cy-c2/2;
CX(kO, :)=cx'; CY(kO, :)=cy';
end
figure,plot (CX(1,:)',C¥(1,:)"', 'k—."', 'LineWidth"', 3)
hold on
plot (CX(2,:)',CY¥(2,:)"', 'k——", 'LineWidth', 3)
$plot (CX(dK, :)',CY(dK, :) "', 'k—="', 'LineWidth',1.5)
$hold on
$plot (CX(2*dK, :) ',CY(2«dK, :) ', 'k-', 'LineWidth',1.5)
$hold on
$plot (CX (KO, :)',CY(KO,:)"', 'k-."', 'LineWidth', 3)
axis([-1 1 -0.6 0.6])
%legend('t=0.0', 't=0.4','t=1.08", 't=6.0")
legend('Direct', 'Opposite')
xlabel('x'"'), ylabel('y")
$title (sprintf ('Dynamic,Bm=%3.1f,wt=%2.0f, .
eps=%5.2d, ymax=%5.4"',Bm,wt,ae,ym))
title(sprintf ('Droplets,Bm=. ..
%$3.1f,wt=%2.0f, eps=%5.2d',Bm,wt, ae))
$XX=[0;x%x;0]; % for dynamics
$figure,plot (XX', [0;¥(1,:)';0]"', 'k—=", 'LineWidth', 3)
$hold on
$plot (XX', [0;Y(dKO, :)';0]', 'k——", 'LineWidth', 1)
$hold on
$plot (XX',YY(dK, :)', 'k——"', 'LineWidth',1.5)
$hold on
$plot (XX',YY(2+«dK, :) ', 'k-', 'LineWidth',1.5)
$hold on
$plot (XX',YY (KO, :)', 'k—.', 'LineWidth', 3)
%$axis ([0 2 0 20])
%legend('t=0', 't=0.2','t=0.4"','t=1.08','t=6.0")
%xlabel('l'), ylabel('\beta')
title(sprintf ('Beta dynamics,wt=%3.0f, .
Bm=%2.1f, eps=%5.2d, ymax=%5.4d',wt,Bm,ae,ym))
function F=SIST(t,y,A,wt,Bm,Bl,El,h,ae)
F=inv ((E1+Blxae)) *x (wt+Ax (y/Bm+sin(2*y)));% with epsilon
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2.6 Ill-posed problem: H. Kalis, S. Rogovs et al., 2015 [76]

Many applied problems formulated as inverse problems of
mathematical physics belong to the class of problems that are ill-posed
in the classical sense. An inverse problem assumes a direct problem
that is a well-posed problem of mathematical physics.

If we know completely a physical device, we have a classical mathe-
matical

description of this device including uniqueness, stability and existence
of a solution of the corresponding mathematical problem. But if one
of the parameters desribing this device is to be found from experimen-
tal data, then we arrive at an inverse problem.

For their approximate solution regularization methods (approximation
by welll-posed problems) are widely used. The theorie of stable nu-
merical solutions of ill-posed problems using regularization was de-
veloped in the 1950-1960 s John and Tikhonov.

For inverse problems for time-dependent equations the generalized
inverse method or quasi-reversibility (R. Lattes and J-L. Lions [28])
of the backward parabolic equation is also used. In book [28] for solv-
ing
physically unstable retrospective problem (ill-posed time reverse prob-
lem for backward parabolic equation) of the linear heat transfer equa-
tion is added the regularization term g%ﬁ‘,
where u = u(x,1) is the solution of the heat transfer equation with ho-
mogenous boundary condition (BCs) of the first kind and € is small

coefficient.
Jdu 2%u

In paper [27] the backward parabolic equation 5; = 55,1 € (0,7)
is regularizing by pseudo-parabolic equation %(ue + 8%) = %2;28 .

When approximate solving ill-posed problems the choice of
regularization parameter € must correspond to the amount of error in
the input data. Here we merely construct stable computational algo-
rithms for ill-posed time-dependent problems and the influence of the
regularization parameter only on the stability of the corresponding
difference scheme. Inverse problems for partial differential equations
and their methods of regularization are considered in the book by V.
Isakov [29].

The nonlinear heat transfer ill-posed problem with the heat con-
ductivity in form of trigonometrical function was derived in [26]. Its
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numerical solution was regularized with two methods: by introducing
u

the differential operator of higher order in the following form €55

and constructing monotonous continuous functions.
Here similar simple nonlinear ill-posed problem with heat conductiv-
ity in form of power function is consider.

2.6.1 Mathematical model

Similarly [26] for numerical simulation the magnetic droplet
dynamics in a rotating field we consider simplest nonlinear problem
of heat transfer partial differential equation (PDE) in following form:

Au(x,t)

Jules) _ PH@es)) o Oule)
xot

ot dx? — &
go,x € (0,L),r € (0,T),
2 2
u(0,1) = u(L,1) = 0, 2491 = 24l o, 7),
u(x,0) = up(x),x € [0, L]

(2.10)

where F(u) = 0.4u> — 1.8u? 4-2.4u is the nonlinear function-the poly-
nomial of the third order,
€ is a small coefficient, go = const > 0 is the constant heat source
term, 7', L are the final time for stationary solution and the length,
up(x) is continuously differentiable function with u((0) = uo(L) = 0.
In [26] the nonlinear function is in the form F(u) = ﬁu + sin(2u),
where Bm is the magnetic Bond number, g = @7, ® - angular fre-
quency, T - time scale, € is the parameter for the regularization equal
about 10~* obtained from physical considerations .
The function F(u) is not monotonic with F'(1) = F'(2) = 0,F(1) =
1(max),F(2) = 0.8(min) (see Fig. 2.42).

The last term in the equations (2.10) is used for the regularization
of the numerical calculations.
By setting € = 0 we obtain the ill-posed problem.
In the numerical experiments by changing the right side constant (in-
creasing or decreasing) go we can take ug(x) equal to the stationary
solution obtained at the previous asssigned value of gg.

If F(u) = gu,g = const > 0, then we have the linear problem of
heat tranfer equation with the constant source term go. If go = 0, then
we have the following simple linear problem for homogenous heat
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transfer equation:

Julxd) _ gag() €(0,L),t € (0,T),
u(0,t) =u(L,t) =0,t € [0,T), 2.11)

u(x,0) = ug(x),x € [0, L]

Here up(x) is continuously differentiable function.

In book [28] the method of quasi-reversibility has been suggested
for solving physically unstable retrospective problem of the linear ho-
mogenous heat transfer equation (ill-posed time reverse problem). The
problem is replaced by regularlzed “higher”-order equation with the

added regularization term & 34

The retrospective or reverse in the time problem for linear homoge-
nous backward heat tranfer equation is in following form:
dult) _ g9ust) v ¢ (0,L),1 € (T,0),
u(0,1) =u(L,t) =0,t € [T,0], (2.12)
u(x,T) = ur(x),x € [0,L],

where the initial function ur (x),ur(0) = ur(L) =0by ¢t =T is given
the final data. This function also can be obtained by solving t he direct
problem (2.11) for t € [0, T].
The obtained solution u#(x,0) for the backward parabolic problem
(2.12) for t = 0 need compare with the initial function ug(x). The in-
verse (retrospective) problem (2.12) is ill-posed as it is unstable with
respect to relative small perturbations of the initial data.

Using the Fourier’s series
u(x,t) =Y ar(t)wi(x), wi(x) = \/2/Lsin k’Z"
we obtain that the Fourier coefficients of the solution are
ar(t) = exp(gh (T —1))arw, where apy = [iF ur (x)wi (x)dx, A = (’%)2
The coefficients a;(0) are uniquely determined from the relations
ar(0) = exp(gAT )ark. These relations show that for any ur a solution
u(x,t) does not exist, and when it does, it is exponentially unstable:
for u that is the k-th term of the sum u(x,#) = Y.;” | ax(0) exp(—gAkt )ariwi(x)
with
ax(0) = gexp(gAxT) we have for the norm for this term in L,[0,L] -
||u(0)[| = eexp(gA4T), while ||ur|| = &.
The ill-posed problem (2.12) we can regularizated in following form:



2.6 Ill-posed problem: H. Kalis, S. Rogovs et al., 2015 [76] 71

a e (X1 82 e (Xt 84 e (X0 86 e (X1
ug(,x)Zg L:;x(zx )+81 Lé;f)—ez L:—),x(éc ),xe(O,L),te(T,O),

ue(0,1) = ue(L,1) = 0, et — el

dx? dx2
%ug(0) _ d%ue(Ly) 0
- 4 - Y

ox* ox
ue(x,T) = ur(x),x € [0,L],

(2.13)

where €, > 0, & > 0 are small coefficients.
In book [28] is analysed the solution with & = 0.
Then ai(t) = exp(gh — &1A2)(T —t))ary and the series for u(l,t) is
convergent in L(0,2) for any u7 in this space and any ¢ < 7.
Moreover, when € goes to 0, the regularized solutions are convergent
to the solutions u of the initial problem (2.12) [29].
If & # 0 then ay (t) = exp(ghx — €1A} — &A2) (T —t))ary and we have
exponentially stable solution when &4, + 82112 > g.

For the comparison the values of the maximal error 6 = max|ug(x,0) —
up(x)| we consider also following regularization problem:

a e (X1 82 e (Xt 84 e (X0 85 e (X1
eltt) _ gOuelut) | g Teltt) _ g Oteltt) v c (0,L),1 € (T,0),

ue(0,1) = ug (L, 1) = 0, 240 _ Puellt) _ ¢ 4 e 7 0,

dx? dx2

ue(x,T) = ur(x),x € [0,L].

(2.14)
Then a(t) = exp((gh — €1A2)/ (1 +&A2))(T —1t))ary and we have
exponentially stable solution when g4 > g.
Using the simple regularization from H. Gajevski, K. Zacharias
[27] we have for problem (2.12) following problem (g > 0):

ox? ox*ot

(2.15)
ug(0,t) = ue(L,t) = 0,ue(x,T) = ur(x),x € [0,L],

{ einl]  gOuelpt) _ gZelel) e (0,L),1 € (T,0),

ar(t) = exp( I:ge’li‘kt)ak(O) and we have exponentially stable solution
for g < 0 when giA; > 1.

We can consider also parabolic equation direct in the time f =T —¢.
Then we have ill-posed problem which differs from the standart

parabolic equation only in the sign of the derivatives in space % =

d
In this case we have ill-posed direct problem with the negative coeffi-
cients g of the heat conductivity. Then we obtain from direct problem
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(2.15) ai(t) = exp(1- gg’l/{‘ t)ax(0) and we have exponentially stable so-
lution for g < 0 when € ll > 1.
ar(t) = exp( 1gikk (T —1t))ar) and we have exponentially stable so-

lution when €141 > 1.

2.6.2 Some theoretical estimations

Using estimation [29]
)] < (O[T ()T (2.16)

then the stability for the class of bounded solutions follows from
this estimate. Corresponding estimation can not be obtained from the
problem (2.14. This estimate remained for the direct ill-posed prob-
lem obtained from (2.13) with the transformation f = T —t.

Using the regularization (2.13) with & = 0 for the direct nonlinear
problem (2.10) we have the PDE

du d du o%u
o =5 (s)5) —e1 57 +80 2.17)
and following integral identity
L 92,2 L
29 / 2dx+/ dx-i-sl/(a 2) dx—go/udx,
0 0

(2.18)
where g(u) = F'(u) = 1.2u> —3.6u+2.4,—0.3 < g(u),g'(u) = 2.4u—
3.6.

For investigating the solvability of the corresponding initial-value
0

problem in the Sobolev space WZ2
for the weak solution and for obtaining the apriori estimations for
fixed ¢ we need determine the parameter € from following inequality:

2 2 2
f&g(u)(%) dx+€; f&(g—i’z‘) dekofOL(@> dx, or£1 >k =max/(u),

where 1(1t) = [§"((ko — (1)) (34)?)dx/ J5 (54 dx MGWz-
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0

From w — 0,& — 0(¢ is arbitrary function EW22 ) follows the

integral equation

2/3223? v [(H@(5) o rato- 55—

or

L 2

/ (244 L (0550 (24 + tho— ) 2 ) g =0

0

Since arbitrary ¢ is arbitrary for fixed ¢ the nonlinear differential equa-
tion follows

2

u 1 L rdun2 9%u

The numerical solution by L = 2 with Matlab solver “bvp4c” (5
boundary conditions:

u(0,6) = u(L,r) = L8010 _ Pulln) _ o 00 _y ) i ky =
1.29,k = 0.0051,b, = 0.55 (for thlS values ko and b, the minimal
value of x is obtalned)

2
If g(u) = —|g| = const < 0 then we have k°+|g| = A1, where 41 = 75 is

the first eigenvalues of the differential Operator —% for homogenous
BCs. Therefore,

Using Matlab solver “bvp4c” with g = —1,kg = 0,L = 2 from (2.19)
get k= 04053 ~ %.

For the Fourier’s series u(x,t) = Y5, ax(t)wi(x), we obtain for
constant function g,
dailt) — o ar(r) — &1 (M) 2ar(t) +br, b = 8o Ji wi(x)dx = go e (1~
(—=1)H),
or ay (1) = exp(pet )ax (0) + 2 (exp(pit) — 1),

where p = —gh — &1 (A)?, ac(0) = [o u(x,0)w (x)dx.
We have bounded solution for g = —|g| < 0, when p; < 0 or g >
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lel _ lel _ L?lgl
max gz =3 ="

From (2.18) using Hélder’s inequality | [©u(x,)dx| < V/L||u(z)|]
follows the inequality

d

575 1 OI + kol ()| < VLol lu(0)]] (2.20)

Using Friedrichs inequality [29] ||u(t)||*> < z—iHux(t)H2 we obtain

A+ S ()] < VEgo or
2
[u(r)]] < ||u(0) | exp(—“2%) +VLgozo (1 —exp(— L),
L L du(

Here |[u(r)]| = (fy u(x,1)%dx)1/2, [uc(r)]| = (J (P5e2)2dx) 12,
For the stationary solutions u,(x) follows the estimation ||us|| < Cs,
where C; = \/Zgoks%.
Using Matlab by N = 100, L = 2(&; = 0.001, see chapter 3) we obtain
for go =5 : ||us|| = 2.21(Cy = 2.23,x = 0.0051, ko = 1.29).

Using the regularization (2.13) with €, = 0 for the direct nonlinear
problem (2.10) we have the PDE

6
R P s (221)
and following integral identity
5 L L 53, L
2_8t/u / dx+82/<a 3> dx—go/udx.
0 0 0

(2.22)
For obtaining the apriori estimations we need determine the param-
eter & from following inequality: & > Kk = maxI(u),

3.\ 2 0
where I(u) = fOL<(k0 —g(u))(%f) dx/ fé(%) dx,u W5 .
From —dl('i;w)
in the form:

Mu 1 , du\ 2 d%u
W—;(O.Sg (u)($> +(k0—g(u))w>=0. (2.23)

— 0,& — 0 follows the nonlinear differential equation
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The numerical solution by L = 2 with Matlab solver "bvp4c” (7 BCs:

92 u(O t) %u(Lt) 94u(0,t) _*u(Ly) _ ~ u(0f)
u(0,1) =u(L,1) = =55 e G = aa =0 =
be)is ko =1.0,xk =0.0041,b. =0.7.
If g(u) = —|g| = const < 0 then we have k°+|g | = A2. Therefore,
_ (ko+1gDL?
T

Using Matlab solver “bvp4c” with g = —1,kg = 0,L = 2 from (2.23)
get Kk =0.1643 =~ 711_9"

From (2.22) using Holder’s inequality and Friedrichs inequality we
obtain
the inequality (2.20) and previous estimates for ||u(r)|| and ||us]|.
Using the Fourier’s series we obtain for constant function g,

dast(t) = —ghar(t) — &2(A) ar(t) + by, b = goi (1 — (=1)),
or a(t) = exp(pit)ax(0) + 2 (exp(put) — 1),
where p = —gh — &2(A)*, @ (0) = [ u(x, 0)wi(x)dx.

We have bounded solution for g = —|g| < 0, when py <0 or & >
L4
)

Using the regularization (2.13) with & # 0,& # 0 for the direct
nonlinear problem (2.10) we have the PDE

0 0 0 d*u 2%u
a_brl:@< (u )aZ) &5+ e 55 +8 (2.24)

and following integral identity

2 2
L L u L(9?
%fo uzdx—i—fo g(u)(%) dx+¢; [, (%) dx+
3 2
82f0L<%> dx:gofOLudx.

For obtaining the apriori estimations we need determine the
parameter & from previous inequality: & > K,

where the parameter kK can be obtained from the equation (2.23). We
have the inequality (2.20), where ky is replaced with ko + €.

(2.25)
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2.6.3 Appoximations and solution of the problems

Analysed the nonstationary solution of the problem (2.10) the limit
case - the stationary solution is consider.

The stationary solution of the problem (2.10).

The stationary solution ug(x) of the problem (2.10) can be obtained
from following transcendental equation F (us(x)) = 0.5gox(L — x) by
fixed values of gg and x € (0,L). The maximal value u,, = uy(x) is the

solution of the transcendental equation F(u,,) = L’0.5 20-

The solution (u(x,#) > 0) is symmetrical with a respect to x = L/2 :
u(L/2 = x1,t) = u(L/2+x1,1),x1 € (0,1/2) or 24E21) — g

The u(x,t) as function of the variable x is discontinuous for gg =
%2F(u*), where u, = 1,u, = 2 are the roots of equation F’(u,) =0
(the local maxima or minimum of the function F(u)). The ill-posed
problem ( 2.10 ) with € = 0 similarly [26] get also the regularization
of the otherwise using the modifying of the function F(u) in such
a way, that in the intervals where the function is with the derivative
F'(u) < 0 the function is replaced with constant value. There are two
possible variations depending on the behaviour of the value gg (direct
for reverse f

functions for increasing or decreasing go, see Figs. 2.43, 2.44).

The stationary solutions with one jump are shown in Fig. 2.45
(direct function) and Fig. 2.46 (reverse function) for go = 3. For
the stationary solutions depending on the value of gy we can obtain
one or two solutions. The modified functions F, f are continous and
monotonous with discontinous first derivatives.

This stationary solutions can be obtained also with numerical simula-
tion as the limit of the nonstationary solution of (2.10) with large time
moment.

Metod of lines and finite differences approximations.

The problems (2.10-2.14 ) are solved numerically using the method
of lines and 3 way finite difference methods for the approximation of
spatial derivatives: local approximation with finite differences in uni-
form grid (LAU) and global approximation with derivatives matrices
in nonuniform (GAN) and uniform (GAU) grids.

1. For local approximation LAU we consider the uniform grid in
the space x; = jh,j=0,N,Nh=L.

Using the finite differences of second order approximation for partial
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derivatives of second and fourth order with respect to x, we obtain
from (2.10) the Cauchy problem for the system of nonlinear ODEs of
the first order in the following matrix form

{ (E+eB)U()+AF(U(1) =Gt € (0.T), 45

U(0) = o,

where E is the unit matrix of N — 1 order, A is the standar 3-diagonal
matrix of N — 1 order with the elements hiz{—l;Z; —1} approximat-

ing the derivative of the second order —59—;2, B = A? is the 5-diagonal

matrix of N — 1 order with the elements h%{l; —4;6;—4;1}, approxi-
mating the derivative % with second order, the first and last elements
of matrix B are B(1,1) = B(N — 1,N — 1) = 5/h*, using the approxi-
mzation of tI%e BCs

9u01) _ 97ulLt) _ () with second order (we use following finite dif-

ox2 )
ference exprgssions uo(t) = un(t) = 0,u_1(t) = —uy (t),un4+1(t) =
—un—1(t)),
U(t),U(t),Uy,F(U),G are the column-vectors of N — 1 order with

the elements u;(1) ~ u(xj,1), i;(t) ~ 2920 1i0) = ug(x)), fj ~

F(uj(t))ugj :g07j: lvN_ L. 5
Using the matrix form A + %B for approximation with fourth

order of derivative of the second order [3] we can obtain the following
problem:

(E+€eB)U(t)+ (A+2B)F(U(t)) =G,
{U<o> — U, : 227

Concerning the R.Lattes and J.L.Lions regularization we can
consider the following initial value problem:

{ ggg))i(gj LB)F(U(t))+&BU(t) —&CU(t) =G, (2.28)

or

{U(t)—i—AF(U(t))—l-SlBU(f) —&CU(1) =G, (2.29)

U(0) = U,

where B =A%,C = A°.
Using regularization from [27] (2.15) we have following problem:
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{ (E—€eA)U(t)+AF(U(t)) =G,

U(0) = U, (2.30)

For the problem (2.27) we have the linear system of ODEs (2.26)
with F(U) = gU,e = 0,G = 0. In this case the solution can be ob-
tained in the matrix form U(t) = exp(—Agt)Uy and U(T) = Ur =
exp(—AgT)Uy, where Ur is the column-vector of N — 1 order with
the elements ur (x;).

2. For global approximations GAN we consider nonuniform grid
with the grid points of the roots of the Chebyshev polynomials of the
second kind

xj=0.5L(1 —cos(mj/N)), j=0,N. (2.31)

Using this grid points we can approximate the derivatives
9 9 92t 9

dx’ ox?’ox*ox6

with matrix D, D?,D*, D° of derivatives in the form

u, = Duy, )| = D*up, u}f = D*uy,ul = DOuy, (2.32)
/ / / /
where uj, = (uo,u1,...,un), u, = (uy,u},. .. uy), etc.
are the column-vectors of the coresponding values u; depending on t:
du(x;t)
!~ o

Mj =~ M(xj,t), MJ- ~ o etc.
From the Lagrange interpolation follows, that the elements of matrix
D are in the form

dlk(Xj)
djy=
]ak dx

,j;k=0,N, (2.33)

o(x)

@ () (x—x)
o =TT (x — xp).
For this nonuniform grid the interpolation error is small.
The determinants of derivatives matrix D? are equal to zero
(this matrix are singular). Therefore to need decrease the orders of this
matrix by deleting the first columns and corresponding rows. Then we
have the matrix A = —D? and A2 = (—D?)? with N — 1 order.
Similarly we can consider the global approximation GAU in uniform
grid.

Using the finite differences of second order approximation for par-
tial derivatives of sixth order with respect to x and A% = (—D?)?, we

where [;(x) = are the elementary Lagrange multiplyers,
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obtain from (2.13) the initial value problem for the system of linear
ODE:s in the following form

{ Ue(t) 4 gAUe (1) — £1A*Ue (t) — £2A7Ue (1) = 0,1 € (T,0) (2.34)

U:(T) =Ur,

or

{Ug(t) +g(A+B)Ue (1) — £1BUe (1) — £2CUe(1) = 0,1 € (T,0)
Ue(T) =Ur,

(2.35)
where B = A% and C = A> for LAU is the 7-diagonal matrix of N — 1
order with the elements %{—1;6; —15;20;—15;6;—1} approximat-

o

ing the derivative —% with the second order, the first and last ele-
ments of matrix C are C(1,1) = C(N—1,N—1) = 14/h* C(1,2) =
C(IN-1,N-2)=C(2,1)=C(N—2,N—1) = —14/h*

4 4
the approximation of the boundary conditions 2 ”g)ff’” =9 'gx(f’t) =0

with the second order ( we use following finite difference expressions
uo(t) = un(t) = 0,u—1(t) = —us (t),u—2(t) = —ua(t),un+1 (1) =
—un—1(t),un+2(t) = —un—2(t),), Ue(t),Ue(t), Ur

are the column-vectors of N — 1 order with the elements ug;(t) ~

. dug (x 7, R ———
e (xj,t), tigj(t) = Me,gfjt),uTj=uT(Xj),J=I,N—l-

For the nonlinear direct problem (equation 2.24) we have following
initial value problem for the system of nonlinear ODEs :

Ue(t) +AF (Ue(t)) + €1A%U¢ (t) — £,A%Ue (t) = G,t € (0,T)
(2.36)
For the bounded solution of (2.34) can be obtained the estimate
(2.16). For the discrete functions v,u we define the scalar product
(vyu) = hzl}/z—ll viuj,(v,u] = hZIJVZI vju; and difference operators
Auj = uyz, = h%(uj_l —2uj+ujq1),Au = —Au ( for the approxi-
rlnation of the second order derivatives) and uz, = }l(u j—uj-1), Uy; =
E(” j+1— uj)
( for the approximation of the first order derivatives). Then for ug =
uy = 0 follows (Au,u) = —(uz,uz] [3].
Similarly (A%u,u) = (Aug, Aug] ,(A3u,u) = (A%uz, Auz) if Aug =
Auy =A%ug=A%uy =up=uy =0,u_1 = —u1,u_p = —up,uy—_1 =
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—UN+1,UN-2 = —UN42.
Then the ODEs (2.24) we can rewriten in following form:

u=gAu—+ 81A2u — 82A3u.

For the squared norm f(¢) = ||u(¢)||* = (u(t),u(t)) we can proved that
the logarithm K (7) = In(f(¢)) is a convex function or K (¢) > 0.
By using the differential equation we obtain f’ =2 (u,1) = 2(u, gAu+
e1A%u — e3Au) = —2(g(uz, ug] + & (Aug, Auz] — €2(A%uz, Aug)).
Further,
f// = —4<g(ux,ux] + & (Auj,/\l;tj] — 82(A2uj,A2Llf]) =
4(g(Au, i) + € (A%u,it) — &2(A3u, 1)) =
4(gAu+ e A%u— e A3u, i) = 4(u, i) = 4||u|.
Now, we have £ f — (f')? = 4||ul|?||||i||* — 4(u,#)?> > 0 according to
the discrete Schwarz inequality.
Therefore, K(t) < (1—1/T)K(0)+t/TK(T), f(t) < f(0)' /T (T)/T
and we obtain the estimate (2.16).

The solution of (2.35)can be obtained in the following matrix form
Ue(t) = exp(Ce(t — T)Ur and

Ue(0) = exp(—TCe)Ur = exp(—T (Ce +A))Up, (2.37)

where C; = —gA + €A% 4+ A3, Similarly we obtain from (2.14) the
initial value problem for the system of linear ODEs in the following

{ (E + &:A°)Ue (1) + gAUe (1) — e1A°Ue (1) = 0.1 € (T.0) 5 3¢,

Ue(T) = Ur.

In this case the matrix Ce = (E +&A?) ! (—gA + €,A?) in the solution
(2.37).

2.6.4 The spectral representation for LAU and discrete Fourier
methods

The solution of the corresponding discrete spectral problem Awf =
,ukwk, k=1,N — 1 for matrix A obtalned with LAU 1s
orthonormed eigenvectors wk((wk,w™) = ZZJV = 8m), With

the elements w \/7 sin ”—Jk, j=1,N—1 (elements of the symmetri-
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cal matrix W), and eigenvalues py = i 4 sin® ’z(l’f,,k 1I,N—1[3].
In the matrix form we get

AW =WD,WW =E.W~ ' =W,A=WDW,

where the elements of the diagonal matrix D is d = .
The representations for matrix A = WDW is equivalent with the stan-
dard 3-diagonal matrix of N — 1 order with the elements iz {-1;2;,—1}

approximating the derivative of the second order —59—2.

For the difference scheme with exact spectrum (FDSES) [26] the
matrix A is replaced with the matrix WDW,

where the diagonal matrix D contains the first N — 1 eigenvalues

A = ( 7)2 of the differential operator (— 2 12) For FDS the elements
of the dlagonal matrix D is dy = Uy.

For any matrix function p(A) follows that p(A) = W p(D)W. Then
A% =WD?W,A = WD?W and from (2.37)
we get Ug(0) = Wexp(—T (D¢ 4+ gD))WUj,
where Dy = —gD + £, D*> + &D? for the problem (2.35) and D, =
(E + &D?*)~!(—gD + £, D?) for the problem (2.38).

In the limit case ((&;,&) — 0) follows that Ug(0) — U.
This is only theoretical result for exact date without
the computer errors for numerical calculations.

Using the transformation V. =WU,Ve = WU, (U =WV, U = WV;)
or Ug(t) = sz\’:_]l Vex (t)wk we obtain Ve (0) = exp(—T (Dg +gD))Vo
or ver(0) = exp(—T (dex + gdi))vi(0),k = 1,N — 1, where vy, vy are
the elements of vectors V, Ve, dep = —gd) + eld,f + szd,f for the prob-
lem (2.34) and dg = (1 + &d?) "' (—gdi + €1d}) for the problem
(2.38).

Therefore for the problem (2.35) ve (0) = exp(—T (1d} +&2d; ) )vi (0)
and for the problem (2.38) vei(0) = exp(—T((1 + &2d7?) 1 (e1d? +
82d]§))vk(0).
Similarly the analytical solutions of the problems (2.34, 2.38) are
(Ue =WVp) :

ver(t) = exp(der(t = T) vy, k= 1,N —1, (2.39)

or Ve(t) = exp(De(t — T))Vr,Ue(t) = Wexp(De(t — T))WUr,
where vy is the element of vector Vi = WUy or Vp = Zﬁ:’;ll upEwr.
For the error 6 = ||Ug(0) — Up|| = max|ugr(0) — u (0)|
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we have following estimate:
S < |lexp(~T (D¢ +gD)) — E||||Uo]|-
For minimal error

|€XP(—kain(dek +gdy)) — 1, (mkin(dek +dy) =de1 +d),

we need choose the parameters 812 + 822 > 0 that the numerical process
is stable. Here

B d (€1 + &d)), for(4.5)
de1 +gd1 = {a’lz(f:‘l +&dy)/(1+&d?), for(4.7)

For the finite difference scheme with the exact spectrum (FDSES)
or discrete Fourier method the diagonal matrix D contains the first
N — 1 eigenvalues dy = A; = (kr/L)?, k=1,N — 1 from the differential
operator (—aa—xzz) correspondly (the eigenvectors remained).

For fixed eigenvector Uy = w", 1 <m < N — 1 we have
Ur = exp(—dnT)W", Ue(0) = exp(—T (dem + gdm) ) Uo
and the error 6, = ||Us(0) — Up|| = ||Uo(exp(—T (dem + gdm)) — 1)||.

For the time reverse discrete problems (2.34,2.35) with g = const >

0 we analogously obtain that

2
g1 > £ or gy > SR gy —

2
andSZZ%orezzw,if&:O.

2.6.5 Some numerical results

In the following examples we are shown the accuracy of the 4 way
finite difference approximations (FDA) for boundary- value problems
(BVP) of simple ODEs by L=2,N = 10:

1) BVP " (x) = 1,u(0) = u(L) = 0, exact solution- u(x) = x>/2 —x,
FDA AU = —e; with maximal errors- 8.3 %1076 (GAN), 4.2x 10~ 1°
(GAL), 3.3x 1017 (LAU),

2) BVP 4™ (x) = 1,u(0) = u(L) = 0,u®(0) = u®(2) = 0, exact
solution- u(x) = x*/24 — x* /6 +x/3, FDA AU = e; with maximal
errors- 7.5% 10715 (GAN), 5.5%1071% (GAL), 4.2 10~ (LAU) ,
3)BVP ul® (x) = 1,u(0) = u(L) = 0,u®(0) = u@(2) = 0,u®(0) =
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u™®(2) = 0, exact solution- u(x) = x°/720 — x> /120 +x3 /18 — 2 «
x/15, FDA A3U = —e; with maximal errors- 1.5 % 1013 (GAN),
1.1%x10712 (GAL), 1.4% 1073 (LAU).
Here e is the column-vector of the N — 1 order with ones.
The problems (2.26-2.34) are solved numerically by the MATLAB
with relative error 107 (RelTol=10"7).
Some numerical results for ill-posed problem for nonlinear heat
transfer equation.
Constructed direct and reverse functions allow us to calculate the so-
lution corresponding to the path with increasing the source g staring
from the initial condition u#y = 0 and the reverse path starting from the
the initial condition uq calculated by using direct function. The nu-
merical simulations are carried out by integating the system of ODEs
(2.26) with two way:
1) € # 0 (an example € = 107%),
2) € = 0 by using the modified functions F, f.
The obtained results in either case are consistent . Some numeri-
cal results obtained for different go is shown in Fig. 2.47. Here for
€ = 1074) the first stationary solution is obtained for gy = 1.6 with
decreasing the source from gy = 3(Up(x) is equal to the stationary so-
lution obtained with increasing the frequency from gg = 0 to go = 3
by T = 6), the second stationary solution is obtained by gg = 1.6 with
increasing the source from gop = 0 (Up(x) = 0) to g = 1.6. Similarly
the solution obtained at gg = 1.6 by direct and reverse paths are dif-
ferent.
Here is two stacionary solutions at gg = 1.6 obtained by 7' = 6 in fol-
lowing way:
1) we use the direct path (function) with Uy(x) = 0 and obtain the sta-
tionary solutions by go = 1.6 and go = 3,
2) we use the reverse path (function) with Uy(x) equal to stationary
solution obtained with direct function by gg = 3.
Using the MATLAB the stationary solutions u(x) obtained at go = 1.6
by direct and reverse paths ( the initial condition is the stationary so-
lutions calculated on the direct path at gg = 3) are different. See also
the dynamic of the solution from gg = 3 to go = 1.6 (Figs. 2.47, 2.48).
The stationary solutions for go = 3,u(1) = 2.861 are shown in the
Figs. 2.45, 2.46.
Using (2.29, 2.30) and (2.26) by decreasing the source from gg = 2 to
go = 1.62 ( the reverse path) are obtained following results for max
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value M of the stationary solutionave (the exact value is My = 2):
1) for (2.29) & = 0 -FDSES: M, =2.074,&; = 3% 107>; FDS: M, =
1.995,6; =4.6%107,
2) for (2.29) £, =0 -FDSES: M, =2.012,&, = 4.8+ 1077; FDS: M, =
2.052,6 =1.2%1078,
3) for (2.26) -FDSES and FDS: M; = 1.990,& = 6.0 1073,
4) for (2.30) -FDSES and FDS: M, = 2.224.£ =7.0x 107!,
For (2.27, 2.28) we obtain similar results.

We can use the transformation with the inverse function u = F 1 (v),
where F(u) is the modified function. Then we have following initial-
boundary-value problem

o :F'(u)(a—i;err),
{‘?(toat) = V(Z?t) =0,t e (O,T),V(x,()) =0,x¢ [0’2]’ (2.40)

where F/(u) = 1.2u®> —3.6u+ 2.4 and u = u(x,t) is the solution of the
cubic equation u® —4.5u” 4 6u — 2.5v = 0. Using Cardano formula we
obtain for v € [0,0.8]J[1,0) one real root in the form
u=15+vI+v2,v1 = ((10v —9)/8 +0.625v/v3)'/3 v2 = ((10v —
9)/8 —0.625vv3)!/3 v3 =4v2 —7.2v+3.2.

We can obtain the maximal value of the stationary solution from this
root, where v = @7 /2. The nonstationary solutions v(x,) are obtained
at go = 1.6 (see Fig. 2.49).

2.7 Two coaxial cylinders: A. Gedroics et al., 2010 [77]

A large number of papers in the time period of 1970 -1990 are devoted
to blow-up phenomena in quasilinear parabolic equations [5].

In this paper the 1-D initial - boundary problem for nonlinear PDEs in
the polar coordinates with radial symmetry of blow-up regimes

du(r,t) 0 d(u(r,t))°*!

= rar M ar

B0 B
ot ror )+a(u(r’t)) 7r€[r07R]at>Oa

(2.41)
by 6 >0,8 > 0,1 > 0,a > 0 and with conditions u(rg,t) = u(R,t) =
0,u(r,0) = up(r) > 0 is considered.

We study the behaviour of solutions(2.41) at the time and also when
t — oo, depending on the parameters o, 3,1, a.
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In [38] is solved the equation (2.41) in one layer of Cartesian coordi-
nates.

Let the cylindrical domain {(r,¢,z) : 7o <r < R,0< ¢ <21, —o00 <
7 < oo} contain thermal conducting material,
where rg, R are the radiuses of the coaxial cylinders. The surfaces of
these cylinders are with constant temperature u = 0.
The 2D domain (r, ¢ ) with thickness / = R — ry is multilayer media Q
of N layers
Q :{(rvq)) :I"EQk,k: 17N70§¢ Szﬂ’-},
where each layer is in the form
Q={(n9):n1<r<n,0<¢ <2x}, ry =R
In the 2D case we shall consider the initial - boundary value problem
for solving the temperature
u=u(r,@,t) >0 from the following nonlinear heat transfer PDEs:

%:lAg(u)—kaf(u), reQ,¢c|0,2x],t >0, (2.42)
where in every layer A > 0 is the piece-wise constants coefficient of
heat conductivity, a > 0 is the constant parameter,

g(s) is nonlinear convex continuously differentiable function with
dg/ds = g/(s) > 0,5 € [0,00],

f(s) is nonlinear convex continuous source function with f”(s) > 0,
A 1s Laplace operator,

_ .—10 /.0¢g _282g
Ag—r W(I"m)—f-r W

If u = g'(u) =0 by r = ro;r = R then the solution of this problem is
not classical [3].

For power functions g(s) =s°*t!, f(s)=sf,6 >0, > 1, > c+1.
If the initial condition u(r, ¢,0) = up(r) depends only on r then the
solution u(r,t) is with the radial symmetry (2.41).

In every layer £ the functions g, f,u and A are in the form g(uy), f(u),
Mk,;Lk, k= I,N.

We have the continuity conditions on the interior surfaces
r=rk=1,N—1(g = % = g'9)

ar
u(ric, 1) = e 1 (rie; 951), Mg (i (ric, 9,1)) = A1 8 (ki1 (i, 9,1))
and boundary conditions on the exterior surfaces r = rg, r =ry = R
ui(ro,¢,t) =uy(R,¢,t) =0.
For the initial condition by r = 0 we give u(r,¢,0) = ug x(r,¢),k =
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1 7]_V7
where ug (7, ¢) is continuous function in every layer.

2.7.1 Some theoretical aspects in one and two layers by radial
symmetry

In one layer similarly [3] we consider the following spectral problem
for Laplace operator by radial symmetry:
d
A5(rE) +ry = 0,y(ro) = y(R) =0,
where U are the eigenvalues.

The solution of this problem is in the form:

I//k(l’) = Y()(b]J') - ’}/k‘]()(bkr)a Ye = fggl];i;gg k=1,2,3,...

where by = /1 /A, Jo, Yy are the Bessel functions for zero order of
the first and the second kind.

The eigenvalues ;. satisfy following transcendent equations:
Jo(biro)Yo(bkR) — Jo(biR)Yo (biro) = 0.

From the norm for the first eigenfunction y; (r) = wil) po— / r’g ryi(r)dr

Iy
follows that [ ry; (r)dr = 1.
Multiplying the equation (2.42) with function ryj(r) and integrating

it by parts twice we get

4E — a(yr, f) — (v, g),

where (Wi, f) = [y ri () f(u(r0)dr, (Wy,8) = fyy ry (rg(u(r))dr,
E(t) = [Rry; (ru(rt)dr > 0,if u(r,t) > 0,
Eo=E(0) = [Rryi(ruo(r)dr >0

Similarly [5] we can prove following theorem:
If the initial function ug(r) satisfies the inequality pg(Eo) < af(Eo)
then the solutions u(r,t) are unbounded in the time

and exist finite value of 7 < T, when maxu(r,t) — o if t — T, where
T. = f(Eo)(af(Eo) — mg(Eo)) " [z % < oo

For the power functions g(u) = u®*', ¢'(u) = (6 + 1)u®, f(u) = uP,
B > 1,0 >0 follows u(r,t) > 0 for all t > 0, if up(r) > 0, and

for B > o+ 1if wWEJ < aEg then we get

T.=E;%(aEP ' — ) J(B—1) < oo, (2.43)
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If B=0+1 and y; < a then the fixed time moment 7, < oo when
E(T,) = oo ( the "blow up” phenomena) is

1
T, =

- ——E(0)°. 2.44
o(a—u) N (249

If B < o+ 1 then we obtain a priori estimation in the form
1— 1 o

E(l) < E(O) +cat (C _ G;+lﬁ ((O-_Zﬁ)'ul )ﬁ/(ﬁ o 1))’
and the solution is bounded for finite value of 1 < .

Similarly for N = 2,r; = H < R,r, = R, we consider the following
spectral problem
A2 (r5E) + iy = 0,1 (ro) = ya(R) = 0,
where
y(r) ={y'(r)(r <r <H)y*(r)(H <r <R)},A = {34},
y'(H) = y*(H), 0y (H)/dr = 220 y*(H)/or.
The solution of this problem is in the form:
w, (r) = % (Yo(bgro)Jo(byr) — Jo(byro)Yo(byr)),
vi(r) = Yo(biR)Jo(bir) — Jo(biR)Yo(bir),k =1,2,3, ..
where b} = \/ /A1, by = \/ 1/ s,

_ Yo(b2R)Jo(b2H)—Jo(b2R)Yy (b7H)
e = o) Yo(bLr0)—dolbLro) Yo(b1H)
Jo, Yy are the Bessel functions for zero order of the first and the second
kind.
The eigenvalues ;. satisfy following transcendental equations

My (Yo(biR)Jo(biH ) — Jo(biR)Yo(biH )) (Yo (byro)Jy (byH) —
Jo(byro)Yi(byH)) — Aabg (Yo(byro)Jo(biH ) —
Jo(bgro)Yo(byH)) (Yo(bgR)J1 (b H) — Jo(biR)Y1 (b7H)) = 0,
(2.45)
where J1,Y; are the Bessel functions of the first order of the first and
the second kind.
From the norm of the first eigenfunction
wi(r) =Yyt = {yl v = (i)
=X rv(dr= 1 eyl (dr+ [ ryd(r)dr
follows that frI; ryy (r)dr = fr[: rl//ll*(r)a’r—i—fI{]e ryd*(r)dr = 1.
Multiplying the equation (2.42) by function ryj (r) and integrating it
by parts twice both integrals we obtain the expressions (2.43, 2.44).
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2.7.2 Methods of lines and FDS for the one and two layers

For numerical calculation in the one layered domain (A = A, u; = u)
we consider uniform grid with additional grid points
(ry =kh+ry,k=0,N,Nh =R —ro). We consider two cases: the radial
symmetry and the 2-D problem in the space with coordinates (r, ).
For solving the equation (2.42) with radial symmetry (1-D problem
in the space) we use the method of lines to reduce the nonlinear heat
transfer problem
to initial value problem for system of nonlinear ODEs of the first or-
der. For the 2-D problem we obtain the stationary solutions using the
vector finite difference scheme with circulant matrix.

In the 1-D case from (2.42) we can be directly obtain the system of
nonlinear ODEs with the second order of approximation in the space
in the following form

i(ri,t) = J ("3 g (ulrien, 1)) — 28 (u(ri,t)) + 525 (u(ri-1,1))) +

af( (rka ))7
where k = 1,N — 1,g(u(rn,t)) = g(u(ro,t)) = 0.
We can rewrite this system in the following matrix form

U= %AG +F, (2.46)
where A is the standard 3- diagonal matrix of N — 1 order with the non
zero elements ag y = —2,dj j+1 = r";}:”
G,F,U are the column-vectors of N — 1 order with elements g; =

g(u(xx,1)), fo = af (ulxy,t)), i = t(xg, ),k =1,N.

In the 2-D case using the powers function and the transformation
V(t,r,¢) = u®*(t,r,¢) and the method of stationarity for the equa-
tion (2.42) we approximate
the derivative %—‘t/ by the discrete difference (Vii1(r,0) —Vi(r,0))/7,
where i =0,1,...,1,

T is the parameter of iterations. The number of iterations [/ is deter-
mined from following conditions:

max |Vi1(r,0) —Vi(r,¢)| < €, where € is the desirable precision.

In this case for each iteration we can rewrite the heat transfer problem
in the following form

9
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{ (ViJrl(rv(p) - Vi(rv ¢))/T = A'Avl#l(r’ ¢) +a(Vi(r7¢))a7i =0,1,...,1,

V()(I’,(P) = uo(r,d)),V,-(ro,(p) = Vl'(Rv ¢) = O’Vi(rvd) +2r Vl'(ra(l))v
(2.47)

where o0 = GL—H’ the function ug(r, ¢ ) = Vy(r, ¢) is the initial condition

for the iterations.

We consider an uniform grid (N+1) x M) :

p = {(re, 9;),rx = ro+kh,¢; = jhe},k=0,N, j=1,M,ro+Nh =

R,Mh(p =27.

The equation(2.47) in the grid points (rt, ¢;) is replaced by vector

difference equations of second order approximation in 5- point stencil:

ArVir1 k-1 = CVigrk +BiVig1h+1 + Fige = 0,Vig10 =Vipin =0,
(2.48)
where V; i, F; x are column-vectors with components v; . ; = Vi(r, ¢ j),
fiakJ = a(vnkJ)O‘ +Vi.,k,j/7:>k = 1,N— l,j = 1,M, Ak,Bk,Ck are the
circulant symmetrical matrices with M-order:
A= [ak,l,ana '“70]7Bk = [bk,la()?()? "'70]7Ck = [Ck,lack,Zv()aO: ""70761(,2]7

__ k05 _ Tt+05
where ay | = i k1= "5 1
Ckp = ChkM = AR Ck1 = a1 +br1 —2ck0+T .

Using special arithmetical operations with circulant matrices the finite
vector difference scheme (2.48) is solved by the Gauss elimination
method.

Similarly we consider the two layered domain (Q;,Q2,, 4| # A;)
and uniform grid in every layer with grid points
(re =kh+ry,k=0NNh=R—ro,Kh+ro=H=r; <R=r.)

In the 1-D case we obtain following system of nonlinear ODEs

with the second order of approximation in the space

i1 (1) = B3 gy (1 1,)) —~ 28 (1 (ro 1) 52 gy (re1,1))) +

Tk

af(uy(ri,t)),k=1,K—1,
i1 (s 1) = 3z (A2 ™02 (g (ua (ries 1)) — g (ua (i 1)) = A %525 (g (un (ry, 1)) —
g(u1(ri-1,1))))) +af (ui(r,1)), k = K;
tiy (i, t) = 33 (2020 (n (1 1,1)) — 28 (ua (i )) + 2525 g (1 (ri1,1)) ) +
af(ur(r,t)),k=K+1,N—1,
where g(uz(ry,t)) = g(u(ro,t)) = 0.

We can rewrite this system in the following matrix form (2.46,A =

D),
where A is the block matrix of N — 1 order with two blocks of 3-
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diagonal matrix form of K — 1 and N — K orders.
In the 2-D case similarly (2.47) follows the heat transfer problem in
iterations form

(Vi (r¢) = V/"(r.9))/T=AnA '_'; (r,0) +a(V"(r,9))%,i=0,1,...
Vo' (r, ¢>)—Mo(7 ) Vi (r0,9) = V7 (R, 9) = 0,V"(r,¢ +2 pi) = V/"(r, ¢)
VI(H,0) = V2(H,0), MoV (H,0)/r = JadV*(H,6) /0,

(2.49)
where V!, V? are corresponding the solutions in the domains €21, £, ,m =
1,2.

The heat transfer equation(2.49) in the uniform grid (¢, ¢;) can be
rewritten in the matrix-vector form (2.48).

2.7.3 Some examples and numerical results

The numerical experiment for the linear equation (2.42)
withg=u,0 =0, f =sin(¢),a=3,A; =1;100,4, = 1 and up(r,¢) =
(R—r)(r—ro) >0,R=1,r0=02,H=0.6
is compared with the following stationary analytical solution
ur(r,¢) = (Crr+Cor ' —r?JAy;
uy(r,0) = (C3r +Car~ ' —r? /A, where Cy,C5,C3,Cy are constants.
For the radial symmetry case is used also nonlinear test with 8 = 0.
The stationary solution is in the following form:
u (r) = (—0.25ar* /A +C1 Inr+C3)*, up (r) = (—0.25ar* /A +C3 Inr +
C4)a7
where o0 = GLH.
The numerical results are agreed with 4 decimal signs with respect to
analytical solutions.
From the numerical results follows that the minimal value of error is
by N = M and further the calculations are produced by different value
of 6, and N =M = 80,e = 1074

In the Figs. 2.50-2.57 we can see the four type solutions (radial
symmetry) for three time moments (t =0,r =T1, =T2 > T1), de-
pending on the parameters
0,B,a and with A} = A, = 1,u; = 14.5615 ( in one layer), A} =
100,4; = 1, u; = 59.2001;
A = 1,4, =100, u; = 58.9950; (in two layers):
1) 0 =3,B =5,a = u, the stationary solution ug(r) is zero (Figs.
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2.50,2.51),

2)o=3,B=4,a=py,uy(r) #0if t — Ty, < o, (Figs. 2.52, 2.53),
30 =3,B=4,a=60,a > u;, u(r,t) — oo globally for all r

when t — T, < oo for T, = 2.822468 (theoretical value T . = 3.3308)
in one layer,

T, = 268.9988( T . = 293.8056) in two layers) (Figs. 2.54, 2.55),

4) 0 =3,B =5,a =500, in two layers u(r,1) — oo locally,

when t — T, < o , for T, = 32.44096 of point r = 0.75 if A} =
100, A, = 1 and for T, = 14.46177 of point

r=0.25if A; = 1,4, = 100 (Figs. 2.56, 2.57).

If B < o+ 1, then for all a > 0 we have by r — Ty < o0

the stationary solution ug(r).

If a = 0, then for all ¢ uy(r) = 0.

If B=0+1,thenforall a < uj ug(r) =0.

If a = py, then the convergence to stationary solution is very fast in
the time. If @ > 1, then the solutions is unbounded in the time

t > T, in all interval r € (ro,R)(T is finite value, see the theoretical
estimation (2.43)).

If B > o0+ 1, then we have “blow up” phenomena by sufficient
large value of E(0) or a, when the solution tends to infinity locally in
small neighbourhood of interior point in segment [rg, R].

From the theoretical estimation Q = aE(0)3=°~1/u; > 1 follows
that the solution is unbounded in the time r > T, < oo, where T, =
Ey(aEf " =) /(B 1).

The behaviour of the solution for o + 1 < 8 we can see in the table
(T is numerical value, T, is theoretical value).

Table 2.1 The values of 7, (numerical value) and T, (theoretical value) by a = 120

o ﬁ T T Q T, Tx Q

1121/0.06822(0.0729(8.2405(|0.13804|0.1464 {2.0270
13 ]0.70117|3.6554|1.0722|ust =0 |ust =0 [0.2277
2131|0.23933|0.2801 (8.2405(|0.57820|0.6514 (2.0270
314 1/1.099441.4354(8.2405((3.1775 |3.8654 (2.0270
4151(5.61870(8.2744|8.2405||19.3153|25.8023|2.0270

For the 2D case (B = 4,0 = 3,a = ;) the stationary solution is
independing on the azimuthal coordinate ¢ (Figs. 2.58, 2.59).
This pictures are obtained by 7 =10.01;0.001;0.0005 and I = 20;40; 70.
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2.8 The special methods: H. Kalis, M. Kokainis etc., 2015 [78]

In this section the finite difference scheme (FDS) for local approxi-

mating periodic function’s derivatives in a 2n+ 1,n > 1 point stencil is

studied, obtaining higher order accuracy approximation. This method

in the uniform grid with N mesh points is used to approximate the

differential operator of the second and the first order derivatives in the

space, using the multi-point stencil.

The described methods are applicable for various mathematical physics

problems involving periodic boundary conditions( PBC).

The solutions of some linear problems for parabolic type partial

differential equations (PDE) with PBCs are obtained, using the method

of lines (MOL) to approach the PDEs in the time and the discretiza-

tion in space applying the FDS of different order of the approximation

and finite difference scheme with exact spectrum (FDSES).

These methods are compared with the global approximations method

[42],which is based on using differentiation matrices (DMs) for deriva-

tives on uniform grid with trigonometric interpolation.

Here we show that the approximation FDSES is equivalent to spectral

differentiation matrix based on trigonometric (Fourier) interpolant.

In the last three decades the concept of a differentiation matrix (DM)

to be a very useful tool in he numerical solution of differential equa-

tions is developed. DMs are derived from the spectral collocation or

pseudospectral method for solving differential equations of boundary

value type [43], [45], [44], [42].

In the spectral collocation method the unknown solution is expanded

as a global interpolant, such a trigonometric or polynomial inter-

polant.

The DMs are based on Chebyshev, Fourier, Hermite and other inter-

polants.

Spectral DMs for problems with PBCs are based on Fourier inter-

polant. In other methods, such as finite elements or finite differences,

the expansion involves local iterpolants such a piecewise polynomials.
In practice the accuracy of the spectral method is superior:

for problems with smooth solutions convergence rates of O(e~V) are

archieved (c=const > 0) [44], [41],[42] .

In contrast, finite elements or finite differences on 3-point stencil yield

convergence rates that are only algebraic in N, typically O(N~2).
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The spectral collocation method for solving differential equations
is based on weighted interpolants of the form [45]:

N

f)=Py =Y, o)

= alx))

D;(x)f(x))-

Here {x j}l}f:l is set of distinct interpolation nodes (grid points), o¢(x) >
0 is a weight function and the set of interpolation functions

{P;(x) }1}':1 sati_sﬁes D;(xy) = Sj; (the Kronecker delta), f(x;) =
Py-1(xx),k=1,N.

For Chebyshev, Hermite and other interpolant the interpolating func-
tions @;(x) are polynomials of degree N — 1.

For nonpolynomial cases there are trigonometric interpolants. The
collocation derivative operator is generated by taking m-order deriva-
tives of the interpolants and evaluting the result at the nodes {x; }.

The derivative operator may be represented by matrix DU (DM) with

(m) _ ﬂ[a(x)@(x)]
kj T dxmloa(x;) X%

The numerical differentiation process may therefore be performed as
the matrix-vector product F (m) — pm) ,

where F,F" are the vectors of function values at the nodes. When
solving differential equations the derivatives are approximated by this
discrete derivative operators.

The matrix-vector product can be computed using the Fast Fourier
Transform (FFT)

in O(NlogN) operation rather than the O(N?) operations than the di-
rect computation.

For boudary value problems with the PBCs the DMs matrlces D)
are circulant and there can be given with first row.

Concerning higher derivatives often the second- and higher-derivative
DMs are equal to the first-derivative matrix raised to the appropriate
power.

Finite difference methods are important for approximating
differential operators and solving various ordinary and partial differ-
ential equations numerically. Probably the most casual are the second
order accurate FDS for approximation of the first and second order
derivatives in a uniform 3- point stencil.

In this paper more accurate methods for approximation of the first and

entries D
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second order derivatives in a uniform multi-point 2n+ 1,n > 1 stencil
are investigated. The algebraic convergence rate is O(N™").

We define the FDSES [39], where the finite difference matrix A is
represented in the form A = WDW*,
W,W* are the complex and conjugate-complex matrices of finite dif-
ference eigenvectors,
D is diagonal matrix of the discrete eigenvalues and the elements of
diagonal matrix D are replaced with the first N eigenvalues from the
differential operator.
For PBCs this method is equivalent to the spectral method with DMs
based on trigonometric interpolant.
In the first publication about FDSES [40] the finite differences with
the second order of approximation in the uniform grid are used for
the approximation of the second order derivative in the space segment
x € [0, L] with the homogeneous boundary conditions of first kind.
Special numerical algorithms are developed for solving 1-D and 2-D
problems of the second order ordinary (ODE) and partial differential
(PDE) equations with PBC.

The linear heat transfer equations with variable coefficients can be
written in the following form:
g (X, 1) = k() ((x,2) ) e+ P () (u(x,1) ) g (¥)ua(x, 1) + f (%), u(x, 0) =
up(x),
where k(x), p(x),q(x),up(x) are real functions,
x € (0,L),r > 0 are the space and time variables, L is the period,
u=u(x,t) is the unknown function (for ODE we have boundary value
problem with u = u(x)).
Note, that the similar system of PDE is considered, where k, p,q are
matrices, u is column-vector.
The heat transfer problem are solved numerically using the method of
lines and two way finite difference methods for the approximation of
spatial derivatives:
local approximation with finite differences in uniform grid (FDS , FD-
SES) and global approximation with differentiation matrices.

For local approximation we have the discrete equations (x; =
jh,Nh =L, j=1,N) as a system of ODEs in following form:
U = (KA2,)(U) + (PA1,))(U) + Q(U) + F.U(0) = U,
where Aj ,,,A2 , are N-th order circulant matrices, U = U (¢),
F =F(t),U =U(t),U, are the column-vectors of the N-th order with

elements u;(t), f(x;(¢)),u (x;j,t),uo(x;)
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K, P, Q are N-th order diagonal matrices with elements k(x;), p(x;),g(x;)
(in the case of the constant matrices k, p,q we have Kronecker tensor
products k QA2 n, p QA1 ,,q@1,1 is N-order unit matrix).

Unlike other boundary condition types, PBC allows to freely in-
crease approximation order by increasing the stencil of grid points.
For example, 2n + 1 points stencil need to use additional discrete con-
ditions of periodicity uy = uyx,k = —n,n. Thus can be obtained al-
gorithms with higher order precision (different order FDS).

The second advantage of PBC is the fact that circulant matrices can
be defined with the first row only. For such matrices it is easy to do
arithmetic operations in shorter computation time. Also it is possible
to get the inverse matrix analytically.

As another advantage one can mention the simple solution of the
spectral problem. Orthonormal eigenvectors wy, w; with the elements
wi,j = VN~ lexp(2mijk/N),
wi ;= VN-lexp(=27ijk/N),i=/~1,k;j=1,N
do not depend on the elements of circulant matrix.

By solving the discrete spectral problem, we can express the matrix
A in the form A, , = WD, ,2W*, where W is the complex matrix
which consists of the eigenvectors in it’s columns, W*

is the conjugate transpose of W and D,, ,- diagonal matrix with the
eigenvalues U, x of matrixA,, , on the diagonal (FDS),
m=1;2,k=1,N.

Eigenvalues are obtained analytically for every multi-points stencil.

2.8.1 The special numerical methods for approximations
derivatives

To determine the special numerical methods in the linear case the
differential and discrete problems with constant coefficients can be
solved analytically in different way:

1) the solution of the differential problem can be obtained with

* the complex Fourier series using the orthonormed eigenfunctions
wi(x) = VL Texp(2mikx/L), wi(x) = VL~ Texp(—2mikx/L) and
eigenvalues A, y = i2mwk/L(for first derivative),

My = —(2mk/ L)? (for second derivative), k = —oo, oo (the first N
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eigenvalues coinside with the differentiation matrices,
obtaining with trigonometric interpolant and FDSES),

* real Fourier series using the functions sin(27kx/L),cos(2mkx/L),
k=1,N,

2) the solution of the discrete problem can be obtained with

* the tranformation V = WU* by reducing the vector-problem to
scalar-sapereted problem with the discrete eigenvalues,

 the complex discrete Fourier series for vector components u; =
u(x;), fj = f(x;) using the discrete orthonormal eigenvectors wy, wy
and eigenvalues
My g Of matrix Ay, ,,m = 1,2,k = 1,N,

* the real discrete Fourier series for vector components u;, f; using
trigonometrical functions sin(2zkj/N),cos(2mkj/N),k =1,N/2
(in this case the real discrete Fourier expression from matrix A, ,
spectral representation is obtained).

For formed complex FDSES in the diagonal matrices D,, , elements
dy, the discrete eigenvalues L, x are replaced

with the first N eigenvalues 4,, x,m = 1;2 in special way (N even):
Ddy =l ,k=1,N/2,di N =Ron/2

k=1,N/2—1,dy=0,

2)dy =M g, k=1,N/2 =1, dyynp= A Nj2—k)
k=1,N/2—1,dy/; = 0,dy = 0 (see Fig. 2.60).

In Figs. 2.60, 2.61 by N = 80,L = 1 for FDS are represented the dis-
crete eigenvalues for —u”, the imaginary parts of the discrete eigen-
values for u’ by different values of n = 1;2;3;4;30 and coresponding
first N = 80 modified continues values for FDSES.

For N odd we obtain:

1) dk = A’Z,kak = 1; (N_ 1)/27
die(n—1) 2 = Mo (N—1) 2=k 1,k = 1,(N=1)/2,dy = 0),

2)dy = )'l,k7k: 17<N_ 1)/2;
v (v-1)2 = —M (N=1))2-k+1): k=1, (N —1)/2,dy = 0).

For variable coefficients k, p,g the numerical solutions of the dis-
crete heat transfer problem are obtained with Matlab ODEs solver
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“odel5s”, using the spectral representation of matrices A, ,,m = 1;2
(FDS, FDSES and versions of differentiation matrices).

2.8.2 Global approximations with DMs

For global approximations in uniform grid
xj=jh,Nh=L,j=1,N

we can use the elements d; I

D, D?), obtained with trigonometrical interpolation in segment [0,27]
[41], [42]:

(1) d,gz} for the differentiation matrices

1) N-even,
d!) =0.5(= 1T cot(E (k— ), (k# ),di} =0,
d) = ~0.5(~ 1) Tesc? (& (k— j)), (k # j),
d¥® — _N*42.
k.k 12
2) N-odd,
d!) = 0.5(— 1Dk Tese(E(k— j)), (k # j).dL} =0,

d) = =0.5(=1y T ese(F (k- j)) cot(F (k- /),

(k# ), diy =135,

(in this case D?) = (D)2 and D) = (DW)" m > 1) [42].

For segment [0,L] the differentiation matices

Ay =DW2T A, = D) “Li; are circulant matrices for FDSES:

Ap =WD,W* m=1,2, where D, D, are diagonal matrices with the
elements

Mj=i2E Doy =A%, =—(E)k=T,N.

In Fig. 2.62 by N = 80,L = 1 are represented coresponding first and
second derivatives from exp(sin(47x),

obtained with the differentiation matrix Aj,A, from the trigonometri-
cal interpolant (maximal errors: 1.65 e-12, 2.39 e-10).

2.8.3 Comparison between DMs and FDSES methods

For circulant matrix A = [a1,a2, ... ,ay_1,ay] the eigenvalues can be
obtained from following expression:
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M = X)L ajexp(2mik(j—1)/N), k=1

For DM D)) and N even we have a; = 0.5(— 1)~/ cot(z(1— j)/N),a; =
0.

Therefore A, = z): (=) cot(F) sin(%),

M=N/2,k=1,N.

We can see that the hat the eigenvalues are

)Lk lk k= 1 M 1 QLM 0

7Lk+M——l<M k),k—l,M—l,lN:O

and

we obtain with multiply Ay by the eigenvalues for diagonal matrix

D , from FDSES.

Similarly for N odd follows:

4 =0.5(-1)! Jese(m(1  j)/N).

M=iY Mo (-1 Jcsc(ﬁ]) sin( %K),

M= (N—-1)/2,k=1,N.

The eigenvalues are

M =ik,k=1,M, gy = —i(M —k+1),

k=1,M,Ay=0

and wilh multiply 4; by 2T” we obtain the eigenvalues of FDSES.

2.8.4 Local approximations with FDS in multi-points stencil

We start with describing methods for higher order accuracy approxi-
mation of a smooth from the space C*"*2[0; L] function in an interval
[0;L].

Consider a uniform grid x; = jh, j = 0,N, where Nh = L. Let n be
natural number, satisfying 2n+1 < N.

The spectral decomposition of the matrix A,, , representation
for FDS and FDSES. Let u,, ; be the j-th eigenvalue of the matrix
A representation for FDS, but w; — the corresponding eigenvector.
It follows from the properties of circulant matrices consists of N com-
ponents w; ,, r = 1, N, where
= b exp(25) =

2 2 j
\/Lﬁ(cos( ”]r) +isin(=3)),
but eigenvalues can be found as L, ; = him V.
We can find that [46]:
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) vi=cosa;Y;_, 4k ((k— 1)!)2 sin2k—1 oj (m=1),

(2%)!
k .
2) vj= 2% gy (k= 1)1)7 sin* & (m=2),
where a; = %
The matrix W = (wy, ..., wy) is a symmetric unitary matrix and

the matrix A,, , can be factored as A, , = W D,, , W*.

Periodic function’s of first and second order derivatives ( in 2n —+ 1
stencil) can be approximated by finite differences with O(h%"), given
by the following circular matrices:

1
Aln=3[0D1" .. D}"0...0 =D ... —D}"],
1
Ayw=5D5" .. DR 0 .. 0D .. DY"]

respectively, where D,lc’" = (—l)k+1 #:)(an,

2n 2 nln T n2n 1 2.n
D" =3D", k=1nDy" = —2y;nD;".
We have spectral representation Ay, =W Dy ,W*; Ay ,=WD,,W*,
where Dy ,,D; , are diagonal matrices with entries
py,j = cos(;) YinQii sin?* 1 (a;),
o, = —hz—z Y.} nQx > sin®*(e;) on the diagonal,

k. 0

Ok1 = % ((k=1)1)% Okp = -

For FDSES we can replace the discrete eigenvalues W, j, j = 1,N

with the first N continues eigenvalues 4,, ; in special way (see Fig.
2.60).

2.8.5 Solving ODEs and PDEs

The described methods of derivative approximation, like other fi-
nite difference approximation, can be applied to estimate function’s
derivatives, solve ordinary and partial difference equations, etc.
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2.8.6 Solving ODEs with constant coefficients

The described finite differences can be used to solve numerically
ODE:s in form

(s pio e S fOx 0D, o
u(0) =u(L), u'(0) =u'(L), '
where p and g are constants ( if ¢ = 0, then fol f(x)dx=0.
For the discrete problem the finite difference equation is
A2,nU+pA1,nU+qU =F,
where U, F are the column-vectors of N order.
Using spectral decomposition of A, ,, and A, and let U=W*U,F =
W*F, then, since W*W = E, we get
(Dapy+pDip+ql) U=F.
Observe that D, , + p Dy , +¢q1 is a diagonal matrix with the elements
Mok + pUik+g,k=1,N, 5
hence now we can easily find the vector U and then the vector U =
wU.

Similarly we can obtain the solution use the complex discreate
Fourier method:

N N
uj =Yy Wi, j» fj = Yg—1 bxwi,j,

where wy j = \/%exp(%rikj/N),

« 1 . -
Wi = \/;exp(—2mk]/N) = WN—k,j»
(Wi, Wipx) = Z]]y: | Wk, W, = Ok.m, are the orthonormed eigenvectors,

bk = (f7 Wk*)'
Then for the unknown coefficients a; we get a; = by / Ly,

where U = Uy i + pli x +¢q (f g = 0 then by = \/%ZIJYZI fi=0).
Example 1: p=3,g=—1, f(x) =cos(4mwx)—3sin(287x), L=
1.
The exact solution is u(x) = u;(x) + 3 up(x)
—(16724-1) cos(4mx)+12 7 sin(4mx) .
(162 +1)2+(127)? ’
_ 84m cos(287mx)+(784m>+1) sin(287x)
up (x) = (78472+1)2+(347)2
Several maximal error of solutions were computed corresponding
to different n values, namely
n =1 (the standard FDS in 3-point stencil), n =7, n = 15 and FDSES.

where u; (x) =
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For N = 35 we have: 5.3¢e —4(n = 1),2.24¢ — 05(n = 15),

4.57¢ —06(n = 15),1.5¢ — 15 ( FDSES)).

The spectral method for N > 28 is exact, because of linear combina-
tion for functions sin(pmx),cos(pmx), p < 28.

2.8.7 Solving ODEs with variable coefficients

For functions k = 1, p = p(x),q = ¢(x) the finite difference equation
(the linear system of algebraic equations) is
A U + (P *Al,n)U +QU =F,
where P, Q) are N- order diagonal matrices with corresponding ele-
ments p; = p(x;), g} = q(x;):
The matrices A ,,,A1, we can formed using the spectral decomposi-
tion Ay , = WD, ,W* A1 , = WD ,W" in two way:
1) for the multi-point stencil FDS diagonal matrices D ,,D; , with
elements [y g, 11 k;
2) for the FDSES diagonal matrices D5 ,,, D1 , with elements A5 x, A; ., k =
1,N in special way.

We can find the vector U in the form U = A~'F or in Matlab U =
A\F,where A=A, +PxA,+0.

Example 2: p(x) = 4kom cos(2ko mx),
q(x) = —(2kom)?(sin(2kq wx) — cos?(2ky T x),
f(x) = f1(x)fo(x), folx) = exp(—sin(2ko7x)),
fi(x) = cos(4mx).
We can see, that function v(x) = u(x)/ fo(x) is solution from ODEs of
constant coefficients v"'(x) = fj(x),x € (0, 1) with periodic BCs.

This solution is in following fom: v(x) = —<25% ng) +C, where C is
arbitrary constant.

The exact solution is

u(x) = COS( o )fo( ) + Cfo(x), where from u(0) = 0 follows that

C=
In Tab.2.2 are rpresented the maximal errors of solutions by N =
20,40, 80, 100, 160; kg = 2,8, 14, obtained with global (FDSES= DM)
and local approximations for different n (1;2;10).

The solutions by N = 80,kg = 8,n = 1;2 are represented in Figs.
2.63, 2.64.
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Table 2.2 The maximal errors obtained with global (FDSES= DMs) and local approximations for
different n

ko| N| FDSES | n=1 | n=2 |n=10
2120 (4.5¢—6|1.1e—2(2.1e—3|3.3¢—5
2140 (2.2¢—11|2.5¢—3|1.6e —4|1.1e — 8
8180 (2.6e—6|7.1e—3(1.3e—3|4.1e—5
100( 4.7¢ — 8 |7.0e —2(9.4¢ — 3|1.0e — 5
14/160| 3.0e —7 [1.4e —2|3.0e —3|7.7¢ =5

o

2.8.8 Solving linear PDEs with variable coefficients

For the heat transfer equation, using method of lines (MOL) we obtain
the linear system of ODE:s:

U(t) = (KxAxn)U(t) + (P*A1,,)U(t) + QU (t) + F(t),U(0) = Up,
where U, F, Uy are N-order column-vectors with the elements

uj(t) = u(xj,t), fi(t) = f(x;,t),u;(0) = up(x;), K, P,Q are N-order
diagonal matrices with the elements k(x;), p(x;),q(x;),j = 1,N.
Formed the matrices with the spectral decomposition we obtain FDS
and FDSES approximations for the linear system of ODEs.

If the cefficients k, p, g are costants, then solution we can obtain
analytically, using Fourier methods. For variable coefficients Matlab
solver "odel5s” is used.

Example 3: Using example 2 with k(x) = 1, f(x,7) = — f1 (x) fo(x),L =

1uo(x) = 1oz fo(x), ko = 2,N =20

we obtain the stationary solution by # = 0.1 with 42 time step for FD-
SES ( max. eror 4.0e — 06),

FDS (n > 7) ( max. eror 2.0e — 05)and with 45 time step for FDS
(n=1), ( max. eror 3.0e —03).

In Figs. 2.65, 2.66 are represented the stationary solutions by kg =
14,n = 1;2,N = 160 obtaining with FDS and FDSES (t=0.1). In Figs.
2.67, 2.68 are represented the solutions u(x,t) by ko = 8;14,N =
80; 160 obtaining with FDSES (t=0.04).

The function v(x,t) = u(x,t)/fo(x) is solution from the heat
transfer equation v(x,#), = v(x, t)xx fl( ) with periodic BCs.

The exact solution by v(x,0) =

6

v(x,1) = fi(x)(exp(—167%) — )/(167r )4 iy = LA i oo,
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We can solved numerically also PDEs with coefficients k(x,t), p(x,?),q(x,t)
depending on x,¢.
Example 4: for k(x,t) = exp(—tsin(27x))/(47?),
p=q=0,
f(x,1) = exp(tsin(27x)) sin(27x) — £ cos?(27x) + ¢ sin(27x)
we have following discrete problem with Matlab operators:
U(t) = (ES1.! %Ay, /(4m*))U(t) +F(1),U(0) = 1,
where ES1 is N-order diagonal matrix with elements
ES;1 = exp(—sin(27mx;)),
F(t) = (ES."). xS+ S*t— (Cxt).2,
S,C are N-order column-vectors with the elements sin(27x;),cos(27x;),x; =
JL/N.
The exact solution is u(x,7) = exp(t sin(27x)).
The maximal errors of solutions by N =20, =1 are:
0.0077(n=1);4.9¢—04(n=2); 1.7¢ —05(n =4); 5.2¢ — 06(n > 6)
and for FDSES.

2.8.9 Solving nonlinear PDEs

We shall consider the initial - boundary value problem for solving the
following nonlinear heat transfer equation:

u,(x,t) = g(u(tvx))xx +f(u<t7x))7

where g(u) = u®*!, f(u) = auP are power functions with a > 0, 8 >
1,0 > 0,u(x,t) > 0,up(x) > 0.

In paper [5] by (a = 1) is proved with the first kind boundary condi-
tions that

1) by B < 0 + 1 exists global bounded solution for all 7,

2) by B > o + 1 exists global bounded solution for sufficient small
[lueol[,

but for larger ||up||, exists finite value of time T, when u(x,t) — oo if
t—T.

The initial value problem for ODEs is in the form

U+AG=F,U(0) = Uy,

where G, F are the vectors-column of N order with elements g; =
g(u(xp, 1)), fr = af (u(xg,t)), k=1,N.

The numerical experiment with L = 1 and up(x) = x(1 —x) >0,

is produced by MATLAB solver “ode23s” by first kind boundary con-
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ditions [1].

Fora=5,0=8=3,(B<o+1),r=10,

N = 6,10,20 are obtained following maximal error using FDS and
FDSES methods:

1) N =6——-0,0125(FDS),0.0011(FDSES);

2) N = 10— —0.0046(FDS),0.0003(FDSES);

3) N =20——0.0013(FDS),0.0001(FDSES).

Example S: in the Figs. 2.69, 2.70, 2.71, 2.72

are represented 4 type solutions by uo(x) = sin'®(nx), N = 50,0 = 3
for periodical boundary conditions obtained:

1) B =5,a =100, the solution is “blow up” locally by 7, = 5.481136,
2) B =4,a= 100, the solution is "blow up” globally by T, = 0.2020261,
3)B =5,a = 1, the solutions tends to zero, if t — oo,

4) B =4,a =0.01, the solutions tends to the stationary limit.

2.8.10 Solving the nonlinear system of heat transfer equations

We consider the nonlinear system of M-heat transfer equations in the

following form:

u = K(g1(0))w+P(g2(w))x +f,

with the PBCs, g1(u) = u®%, g, (u) = uf

are the vector power functions, K is the positive definete M-order ma-

trix with the elements k, s, m,s = 1,M, with different positive eigen-

values ug > 0,

P is the real M-order matrix with the elements p,, ¢, m,s = 1,M, with

different real eigenvalues

Up; u(x,0) = up(x),u(x,#),up(x) — are periodic functions- column-

vectors of the M-order with elements u™ (x,t),u™ (x,0),m = 1, M.
The discrete equations are in the form

U= (K®A2,n)Ua + (P®Al,n)U[3 +F,

where U(z),U(0),F(¢) are MN column-vectors with the elements

uT(t),uT(O), 7m = 1I,M,j=1,N.

Example 6: M =2,L = 1,u}(x) = by ; sin(27x) + by » cos(27x),

ud(x) = by, sin(27x) + by 5 cos(27x),

fL(x,1) = ar1(¢) sin(27x) +ay 2 (¢) cos(27x),

f2(x,1) = az1(¢) sin(27x) + az 2 (¢) cos(27x),

b11=0,b1p=1,by1 =—1,b5=0,
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ay) =5,a12=10,a2) = —10,a, = -5,
and we can consider 2 matrices

B bi1b12 A= (@ra2
by byn a az»

k=(2737)r=(12)

are with the eigenvalues Ax = (1;5),4p = (1;—3).

We have following maximal and minimal values of solutions U, U?
fort =0.1;

o = 3 = 3 (solution tends to stationary for small time t=0.1(see in the
Figs. 2.73-2.74 the solution by t=0.1 and maximal and minimal values
depending on t)

If N = 40 then we have for max-min values of +U!, +U? :
0.51212;0.42610(n = 1),

0.51234;0.42653(n = 2),0.51286;0.42679(n = 3),
0.51308;0.42701(n = 4),0.51320;0.42719(F DSES).

If N=80, then by FDSES and FDS n = 4): 0.51323; 0.42725.

Matrices

2.9 The combustion proceses: H. Kalis, U. Strautins etc., 2019
[79]

The experimental study of the effect of co-firing on the main gasifi-
cation and combustion characteristics was carried out by varying the
propane supply and additional heat input into the pilot device with es-
timation the effect of co-firing on the thermal decomposition of wheat
straw pellets, the formation, ignition and combustion of volatiles (CO,
H;). The mathematical model is developed using the environment of
MATLAB package with account variations of supply the heat energy
and combustible volatiles (CO, H,) into the bottom of the combus-
tor. The dominant exothermal chemical reactions were used to evalu-
ate the effect of co-firing on the main combustion characteristics and
composition of the products CO; and H,O. The results prove that the
additional heat from the propane flame allows control the thermal de-
composition of straw pellets, the formation, ignition and combustion
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of volatiles and the development of combustion dynamics, thus com-
pleting the combustion of biomass and leading to cleaner heat energy
production.

For mathematical modelling the 1D distribution of axial component
of velocity w, density p, mass fraction for different species and tem-
perature T has been calculated with Matlab routine ’pdepe” .

We use the mathematical model with following exothermic chemical
raction for obtaining the final products H,O,CO;:

C3Hg 450, — 3CO, +4H,O(one reaction with 4 species).

The 1D distribution of axial component of velocity w = u, /Uy, (Uy =
0.1m/s), density p /po, (po = 1kg/m>), temperature T / Ty, (Ty = 300K )
and mass fractions for species

Cr,k=1,K,K =4,C1(C3Hz),C2(02),C3(CO,),Ca(H20),

has been calculated of the nonlinear parabolic type system of PDEs,
depending on time 7/t, (fo=1s) and axial coordinate x = z/7, (z0 =
0.1m) with Matlab routine pdepe” for 7 unknown functions.

At the inlet of the combustor x =0: T = Ty, u; = Up, p = po in phys-
ical experiment obtained averaging values of concentration C3Hg, O
as the mass fraction of reactants Cy,C, are used for the mathematical
model,

the summ of reactants is equal 1, but of products is zero.

The production rate for k-th species can be written in following form
[69]

PCn

nmy

J K ,
Q= ;[(V}Ck ~ Vi OR(T) 1:11( )Vin), k€ [1,K],

where J is number of reactions, R;(T) is rate constant modified with
Arrhenius temperature dependence for the forward path of chemical
reaction R;(T) = A TPi exp(E;/RT),

A’j are the reaction-rate pre-exponential factors, R = 8.314 [J/(mol K]
is the universal gas constant,v}: o V;’,k are the corresponding stoichio-
metric coefficients of k-th species appering as a product and reactant
in j-th reaction,

B, is the order for temperature, my,[g/ m?] is the molecular weight of
species Cy, :

0, =32,CO, =44,H,0 = 18,C3Hg = 44.

In the equation for the mass fractions of concentation Cj the source
term is mQ;/p[1/s], but in the equation for temperature
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mpc —L_yK Qi [K /5], where m = I(Zk | Mk

is averaged molecular weight of mixture, ¢, = 1000[J/(kgK)] is the
specific heat at a constant pressure, [kJ /mol] is the specific enthalpy
of k-thspecies:

0, =0,C0, = -394, H,0 = —242,C3Hg = —105.

For mathematical modelling the 1D compressible reacting swirling
flow and density we considered a two parabolic type partial differen-
tial equations (PDEs) in following dimensionless form:

p . 82p
{W—FM([))-FP Ix 8x2’ (2.51)

2+ M(w) = —2L +Re "' 0¥,

where M(s) = wa ,s = p,w,Cy, Re =Upzopo/ U = 1000 is the Reynolds
number, y = 510~%[kg/ms] is the viscosity,e = 10~ and the value of
Re are the factors of the artificial viscosity for approximation the den-
sity and velocity eguations. For the dimensionless pressure p we use a
model for perfect gas: p = pT.

The boundary conditions at inlet (x=0): p =w=T = 1.

These values are used for initial conditions by t=0. In outlet the zero
derivatives conditions are used. The numerical results depending on
(x,t) are obtained for x € [0,2],7 € [0,#/],1f = 1;10.

2.10 The reactions: CsHg + 50, — 3CO, +4H,0

For mathematical modelling of one reaction for four chemical species
and for the temperature, we have the following equations

,

G M) = 5E+ap*MTPCCexp(~ ),

(e <G p TGl

%+M(@)=Pa€ 5p5A1TB1mz/m1C1CzeXP( 7):

% L M(C) = P‘Z—Cz+3p5A1Tﬁ1m3/mlclczeXP( 1)

| % 1 M(Cy) = PSS +4p°A TFimy fmy €1 C3 exp(— %%2 5
(2.52)

where ﬁl =0,01 = (m1h1 ~+ Smphy — 3mzhs — 4m4h4)/(m1m), Al =
Al p3z0/(Uogm3) is the scaled reaction-rate pre-exponential factor, A} =
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14[m"> /mol>s], Ey = 120000 [73]. The boundary conditions for C;,C;
at the inlet (x=0) are

Ci= 0.1,0.7(C3H8), Cy=1-— C10(02) (see Tab. 2.3 for Iy = 10).
From the other algorithm it follows that: % = % = %,Cl +C =1
or Cijgo = 0.22,C5p = 0.78. The maximum values of MT, Mw, wend,

Table 2.3 The values of Mw , wend, MT, Tend, Clend(C3Hs), C2end(0;), C3end (CO;), Cdend
(H>0), depends on Cjg

Cio| Mw |wend| MT |Tend|Clend|C2end|C3end|C4end
0.1(4.48]1.61|4.78|2.11| 0.00 | 0.54 | 0.30 | 0.16
0.2/6.64| 1.97 |8.48/3.67| 0.01 | 0.09 | 0.59 | 0.32
0.3/6.41]1.93|7.91{3.52| 0.12 | 0.04 | 0.54 | 0.30
0.4(5.64(1.8717.02|3.27| 0.25 | 0.04 | 0.46 | 0.25
0.5|4.71] 1.816.23(3.04| 0.37 | 0.04 | 0.38 | 0.21
0.614.50( 1.7315.21{2.82| 0.50 | 0.04 | 0.30 | 0.16
0.7(2.83] 1.61 |4.17|2.59| 0.63 | 0.04 | 0.22 | 0.12

Tend, CO,,H,0 are obtained for C;o = 0.2 when the propane mass
fraction at the outlet x=2, Clend=0.004. For Ciy = 0.1, Clend=0, but
the mass fractions of O, C2end=0.54 ( the mass fraction for propane
at the inlet is to small).

Figs. 2.75-2.80 illustrate the development the temperature, axial ve-
locity and concentrations in the time ( z; = 10) and space for C; =
Cio=04,C0,=Cy=0.6.

2.11 The qypsum products: A. Aboltins, I. Kangro etc., 2020 [80]

At first, we study the heat transfer problem for two layers for gypsum
board products -

gypsum plate and gypsum carton plate with different density exposed
to fire. For studying the heat transfer we have to solve the system of
2 nonstationary partial differential equations (PDEs) (with heat dif-
fusion coefficients depending on temperature) expressing the rate of
change of temperature in every layer.

The approximation of corresponding initial-boundary value problem
(IBVP) of this system is based on the conservative averaging method
(CAM) by using special splines with hyperbolic type functions. This
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procedure allows to reduce the 2-D heat transfer IBVP described by a
system of 2 PDE:s to initial value problem for a system of 2 ordinary
differential equations (ODEs) of the first order.

The second problem under question is combustion process with Ar-
rhenius kinetics using single step chemical reactions. The exothermic
chemical reactions are modelling by single step of fuel and oxidant, at
the inlet the constant axial velocity is given. Numerical solution with
Matlab routines “pdepe”and ” bvp4c” is obtained.

2.11.1 The mathematical model and formulation of the gypsum
board problem

We consider gypsum board material with two layered plates in x-
direction : gypsum plate (0.0525 [m]) with density 300[%] and gyp-

sum carton plate(0.0125 [m]) with density 1000[’];—%]. The gypsum
plate on one border is heated with temperature 7; = 20 + 345/g(8¢ +
1)[°C], where t is the time in minutes.The domain £ consists of two
layer medium:

Qi ={(x,5,2) : x € (Xi—1,X;),y € (—00,00),2 € (—o0,00)},i = 1,2,

where H; = x; — x;_1 is the height of layer Q;,xo = 0,x; = H; =
0.0525,x, = L= H; + H, = 0.0650,H, = 0.0125.
The heat conduction PDE is the following form:

oT, o oT; R
Cpi(Ti)piW = EC(Ki(Ti)g);x € [xi—1,x],i=1,N,t >0, (2.53)

where c),; are the specific heat, K;, p; are the heat conductivity and the
density of the gypsum material.

We assume that the coefficients c;, K; in the PDEs are dependent of
the temperature 7;.

In two layers (N=2) we get the system of two PDEs

{Dl (T>(92T1()C.,l) — aTla(l.‘X,l‘)’

a2%9x(2 ) D (x)
Xt x,t
DZ(T) = = zat )

(2.54)

ox?
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where D;(T) = pﬁi@)

pending on 7;.

,i = 1,2 are thermal difussion coefficients de-

In [71], [72] there are obtained, that the coefficients of the specific
heat ¢, and thermal conductivity K depend on temperature T (T = u)
in the following way: K decreases from value 0.24[-2-] at u = 20[°C]
to 0.12 at u = 200, then K increases depending on u to value 0.24;
coefficient ¢, in this heat intervals is increasing from 1000[kg+,c] at

T = 20[°C] to 8000 and then decreasing to 1000.

For approximation we use the cubic spline interpolation, see Figs.
2.81, 2.82. For the initial condition for r = 0 we give Tj(x,0) =
T>(x,0) = Ty, where Ty = 20[°C].

We use following boundary and continuous conditions:

{Dl(T)% —a(Ti(0,t) = T,) = 0,T2(L,t) = T, + Ti(t), (2.55)

Ty (x1,1) = To(x1,1), Dy (T) 24801 — p, (1) 2T2funt),

X

where « are the constant mass transfer coefficients,

T;(t) = 3451g(8t + 1) in minute, T, = T}, = 20[°C].

CAM procedure allows to reduce the problem to a initial problems for
system of ODEs. Using averaged method with hyperbolic type splines

with respect to x we have

0.5H; sinh(a; (x—X; h(a;(x—%;))—Ai
Ti(x,1) = T (t) + mi(t) si;ﬁr(lo.(;afﬁb)x» +ei€§2ir§t61{2(()(c).2);2Hi) ’
where T;,(t) = JLLI, o T, )dx, X = (xio1 +x3) /2,% € [xio1,i],

_ sinh(0.5¢;H; . 1.
Ai_—O.S*aih(i , 1= 1,2. o
We can see if parameters a; > 0,a; > 0 tend to zero then the limit

is the integral parabolic spline (A.Buikis). The unknown functions
m;(t),e;(t), can be determined from boundary conditions.
Follows the nonlinear system of ODEs

T:lv =bnT,+biT+ fi+pi1(2),
Ty = b1 Tiy+ b2 Ty + fo + pa(t), (2.56)
Tiu(0) = T2 (0) = Tp.
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2.11.2 The mathematical model of the combustion process

The combustion process with temperature 7' [K] and simple exother-
mic chemical reaction by first-order Arrhenius kinetics with mass
fraction C of the reactant in the time 7 in the z-plane with the length
zo = 0.1[m] is modelling.

Let Tp = 300[K], po = 1[ £],C = Cy = 1 the initial temperature,
nominal density, mass fractlon for concentration of fuel and axial ve-
locity with uniform streem Uy = 0.01[%] at the inlet z = 0.

We analyze the nonstationary physical model for simple chemical
reaction with temperature and 2 reaction-diffusion equations:

2
{ Ftu Z Z %Zg—FBA’CeXp( Ri) .57

€t u ¢ D § —A' Cexp(—£),

where D = 5.1073 [m ] is the molecular diffusivity,
A =5.107°[—L] - the thermal conductivity, ¢, = 1000[ =] - the spe-
ciﬁc head at eonstant pressure

= 1.510°[],A" = 10*[{], E = 2.510%[,7;] are the specific heat re-
lese, the reactlon rate pre-exponential factor and the activation energy,
R- the universal gas constant.
The equations were put in the dimensionless form scaling all the
lengths to zo, the density to po, the Velocities u, to Uy, the temperature
to T, the special heat release B to the reaction-rate pre-exponential

factor A’ to L the activation energy E to T .
. 20 0
Following parameters are used:

Pe = %, Le = %) B " Peclet and Lewis numbers, P; —
P

_ _B .5_ E .
B= P o 0= RT; -the scaled heat-release and activation-energy.

¢ =2

Pe’ Pe>

For the dimensionless parameters 7,x = %, w= 5—3

equations

we have following

P sz

{ = gt paCen( ) (2.58)
Wer(9 = P26 —ACexp(—9).

We use following boundary conditions:
1) at the outlet x = xg — % =0,s=T;C,
2)attheinletx=0— p=1,T=C=1.
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The approach seeks the steady solution as the time asymptotic limit
of the solutions of the unsteady equations.

2.11.3 Some numerical results of calculation of gypsum boards

The results of calculations are obtained by MATLAB. We use the
discrete values x; = jhj = 0,Ny,Ny h = L,t, = nt,n =0,N,,N,T =
tr,N, = 100, Ty = 20[°C],

T, = 20°C, T, = 20+ 3451g(8t + 1)[°C],t € [0,1,]. The stacionary so-
lutions are obtained in the time 7 with the maximal temperature
678.43[°C).

The results of calculation for #; = 2000]s],#, = 600[s] are represented
in the Figs. 2.83, 2.84,

T(0,t7) =139.94,T(H;,t;) =150.42,T(L,ty) = 678.43,T;, = 139.08,
15, = 387.10 (the temperature in the first layer of gypsum plate is
nearly constant).

The parameters a; = 20,a, = 10 in the spline functions are obtained
for minimal value of maximal error for averaging values.

For numerical experiment we use also backward orentation: for gyp-
sum plate H, = 0.0525m with density p, = 300:’;—%7 gypsum carton

plate H; = 0.0125[m] with density p; = 1000[%],6!1 =10,a; = 20.

The results of calculation are represented in the Figs. 2.85, 2.86,

T(0,t7) =100.27,T (Hy,t;) =479.73,T (L,ty) = 678.43,T;, =283.88,T>, =
569.15, (the temperature for x=0 in this case is smaller as in the di-

rect orientation). In the Fig. 2.87 we can see good coincidence with
experimental results (7' = u) obtained in [70].

2.11.4 Some numerical results with reaction-diffusion equations
Jor combustion process

The minimum value of flow density, maximum values of the tempera-
ture, the reaction rate R* = A.C.exp(—6/T) are calculated. The influ-
ence of the molecular diffusivity and thermal conductivity on the main
characteristics of the undisturbed flame flow is obtained for B =5 (see
Tab. 2.4).
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These results show that at the constant molecular diffusivity D the de-
creasing of the thermal conductivity A (P; = 0.01,Le = 0.1) leads to
an increasing of the reaction rate and maximal values of the tempera-
ture

but at the constant thermal conductivity A the decreasing of molecular
diffusivity D(P,» = 0.01,Le = 10) results in an increasing of maximal
density and in a decreasmg of temperature and reaction rate.

Table 2.4 The values of MaxR , Min p, Max T depends on P, P,
Py | P, |\MaxR*| Minp |MaxT
0.01{0.01| 98.71 [0.0286|6.000
0.10(0.01| 61.22 |0.0425|2.467
0.01(0.10| 401.2 |0.0228|15.81
0.10(0.10| 298.8 0.0305|5.994

For fixed values of velocities w = 1 and P = P> = 0.1 the heat-
reaction problem are solved numerically using finite differences ap-
proximation in two way: p = 1/T (small Mah numbers for compress-
ible fluid) and p = 1 (incompressible flow).

If p = 1/T then we have for maximal and averaged values of tem-
perature: Tmax = 2.957, and for maximal value of reaction rate
Rmax = 252.20. For p = 1 we have Tmax = 5.969, Rmax = 593.31.
The results of calculation are represented in folowing Figs. 2.88,
2.89. Using two simple reaction we obtain following 1-D reaction-
diffusion problem (p = 1):

3, ‘I‘Wax Pl +ﬁ1A1 C16Xp(—%)

—|—B2A2 CzeXp( 52)

9 4 3G _Pza G _ A, Crexp(~2)

&—k aCZ =P, a C2 —A; Czexp(—%)
0,7

=2

1
9

(C (0,15 x € (0,1),T(0,6) = 1,C41 (0,

ALY — 0,5 = T3C13C, T(x,0) = 1,
[ C1(x,0) = 0.8exp(—ax),Co(x,0) = 0.2exp(—ox),

) =0.8,C»(0,¢) = 0.2,

(2.59)
where A = A = 5.101,4, = 5.10°,8, = 5,8 = 1,8, = 10,6, =
15,ty = 1,L = 2;4, o € [0,6] is the parameter for the initial fuel
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amount in the plate. The results of calculation using 2 reactions with
Tmax = 5.269 for w =1 (T(2,1) = 1.248) and w = 4 (T(2,1) =
5.200) are represented in the folowing Figs. 2.90, 2.91.

Using one reaction (C; = 0,C1(0,7) = 1) for w = 1 (Tmax =
6.0881,7(2,1) =1.295) and w =4 (Tmax = 6.114,T(2,1) = 1.248)
we have the following Figs. 2.92, 2.93.

In the following Figs. 2.94, 2.95 for one reaction we can see the
surface in (x,t) plane atw =4, L =4, 00 =6,P| = P, = 0.1, (Tmax =
6.281,T(4,1) = 4.085) and profile of temperature for w = 3, P| =
0.01,P, = 0.001 (Tmax = 5.690,T(2,1) = 4.000).

For stacionary reaction-diffusion equation by (A; = 5.10* A, =
5.10%,8, = 10,8, =20, p = I,w = 0,T = T(x),C; = C(x),C; =
Ca(x),x € [0,2])
withBCs 7(0) =1,C1(0) =0.8,C2(0) =0.2,T(2) =C}(2) =C5(2) =
0, by multiply second both equations with f3;,, and summed the
equations for x — 2 follows that
Tmax=T(2) = l+w Le = %

Using Matlab solver ”pr4c it is obtamed that the increasing of the
axial velocity w leads to an increasing of Tmax at Le > 1 and to de-
creasing of Tmax at Le < 1, but for Le = 1 Tmax is not depending
on w (see Tab. 2.5). For one simple reactions :C; = 0,C; = C,B; =

ﬁasl =0

Table 2.5 The values of MaxT , T°(0), C’(0) depends on P;, P>, w, 3
P1 P2 w ﬁ MaxT T’(O) C,(O)
0.01{0.01{0.0{1.0| 2.00 | 68.6 |—68.6
0.01{0.01{1.0{1.0{ 2.00 | 9.15 |-9.15
0.02|0.01{0.0|1.0| 1.50 | 17.6 |—35.3
0.02{0.01(1.0{1.0| 1.83 | 12.9 |-9.02
.005{0.01]0.0{1.0| 3.00 | 98.1 |—78.3
.005]0.01]0.5|1.0| 2.54 | 84.9 [—69.5
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2.12 Conclusions

* The FDSES and trigonometric interpolation are equivalent.

* The all eigenvalues and eigenvectors for finite difference operators
are obtained.

* The algorithm of discrete Fourier method are formed in different
wise.

* The advantages of the FDSES and DM methods for solution the
problems with PBCs are demonstrated in comparision with local
FDS methods.

The nonlinear heat transfer problem is approximated with the non-
linear initial value problems of a system of ODEs of the first order.
Depending on the parameters two type of solutions are obtained:

1) for large value of the time ¢ the solution is stationary or tends to
zero,

2) in the fixed time moment the solution have blow up phenomena -
the solution tends to infinity in a small interval or in all domain by a
fixed time moment.

Two monotonous functions corresponding to the paths with increas-
ing and decreasing source term may be constructed and two different
solutions exist in definite ranges of the source term. This leads to hys-
teresis phenomena in the solutions transformations at change of the
source term.

The ill-posed problems for parabolic PDE are regularized and solved
with Matlab solver “ode15” by discretizing the spatial derivatives with
finite differences.

The 1-D nonstationary diffusion-convection initial-boundary value
problem (IBVP) in layered domain is reduced to problem of ODEs us-
ing the hyperbolic type splines. The nonlinear system of PDEs (ther-
mal diffusion coefficients depend on temperature) is studied for the
heat transfer processes in two gypsum layers. The numerical results
are compared with the experimental results and the matching results
can be considered sufficiently accurate for engineering-technical cal-
culations.

The nonstationary physical model for simple chemical reaction with
temperature and 2 reaction-diffusion equations characterised combus-
tion process with Arrhenius kinetics is considered.
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B

Fig. 2.30 Direct function F(u) at Bm = 1.5
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Fig. 2.31 Reverse function F () at Bm = 1.5
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Fig. 2.32 Stationary solution at
Bm = 15,0t = 15 in the case of direct
function

1,5

2,0
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Fig. 2.33 Stationary solution at
Bm = 1.5,0t = 15 in the case of reverse
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Beta dynamics,wt= 1,Bm=1.5,eps=1.00e-004,ymax=6.2126e+000
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Fig. 2.42 Function F(u)
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Fig. 2.43 Direct modified function F(u). The Fig. 2.44 Reverse modified function f(u).

following numerical values are shown in fig- The following numerical values are shown in
ure: u; = l,up = 2.5,F; = 1; In the fixed figure:v; = 2,v5 = 0.5, fi = 0.8; In the fixed
points (© there are values of g with the coor- points () there are values of gy with the coor-

dinates (u5(1),80/2) dinates (u5(1),80/2)
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Fig. 2.45 Stationary solution u,(x) at go = 3
in the case of direct function

U=U(x) W= 2.eps= 00

.

Bommmmeee ol
PR

iy
\
\
)
1
1
1
¥
'
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Fig. 2.46 Stationary solution u,(x) at go = 3
in the case of reverse function
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solution
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beta=5.0,sigma=3.0,a=14.562,T1 = 5.000000, T2 =50.000000
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Fig. 2.50 Solution in one layer, uy = Ofor r €
[0.2,1], B =5,0 =3,a=14.5615

beta=4.0,sigma=3.0,a=14.562,T1 = 1.000000, T2 =3.000000
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Fk,
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Fig. 2.52 Solution in one layer, ugfor r €
[0.2,1], B =4,0 =3,a=14.5615

beta=4.0,sigma=3.0,a=60.000,T1 = 2.822460, T2 =2.822465

Fig. 2.54 Solution in one layer u — oo for r €

(02,1), B =4,6 =3,a =60
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beta=5.0,sigma=3.0,a=59.200,T1 = 3.000000, T2 =50.000000
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Fig. 2.51 Solution in two layers, uy = 0 for
re0.2,1], B =5,06 =3,a=59.2001, A; =
100,A, =1

beta=4.0,sigma=3.0,a=59.200,T1 = 1.000000, T2 =10.000000
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Fig. 2.53 Solution in two layers, uy for r €
[0.2,1], B = 4,0 = 3,a = 59.2001, A; =
100,4, =1

beta=4.0,sigma=3.0,a=60.000,T1 = 268.997000, T2 =268.998000

Fig. 2.55 Sol. in two layers u — o for r €
(0.2,1),3=4,06 =3,a=060, A; = 100,A, =
1
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beta=5.0,sigma=3.0,a=500.000,T1 = 32.440950, T2 =32.440960

Fig. 2.56 Solution in two layer u — oo for r =
0.75,8=5,06 =3,a=500, 1 = 100,44, =1

Solutions, N=80.000,M=80.000,Maxkl=0.0000, lter=41.00

Fig. 2.58 2D solution in two layers uy #
07 ﬁ = 470‘ = 3,Ll = U = 5920017 A
100,A, =1
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Fig. 2.60 Eigenvalues for —u” by N =80,L =
1,n=1;2;3;4;30
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beta=5.0,sigma=3.0,a=500.000,T1 = 14.461760, T2 =14.461773

oo

e}
o
o
o
o
o
o
o
o
o
o
Q

©00 ¢
o0
” oo
©0oo,

02 03 04 05 06 07 08 08

Fig. 2.57 Solution in two layers u — oo for r =
0.25,8=5,0=3,a=500, 1 = 1,4, =100
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Fig. 2.59 2D solution in two layers uy # 0,
B=4,0=3,a=u; =58.9950, 1) = 1,1, =
100
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Fig. 2.61 Imaginary part of eigenvalues for u’
by N =80,L=1,n=1;2;3;4;30
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First DM from exp(sin(4*pi*x)),N= 80
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Fig. 2.62 First and second derivatives from
exp(sin(4mx), obtained with the differentia-
tion matrix Aj,A, of trigonometrical inter-
polant byN = 80, L = 1, (maximal errors: 1.65
e-12,2.39e-10)
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Fig. 2.63 Solutions: exact, FDS (n=1), FD- Fig. 2.64 Solutions: exact, FDS (n=2), FD-

SES by ko = 8,N = 80 SES by ko = 8,N = 80
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Fig. 2.65 Solutions: exact, FDS (n=1), FD- Fig. 2.66 Solutions: exact, FDS (n=2), FD-

SES by ko = 14,N = 160 SES by ko = 14,N = 160
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Virsma,Laika sl.sk.= 34, Max-err=0.000028 Virsma,Laika sl.sk.= 37, Max-err=0.000031

Fig. 2.67 Solutions FDSES, u(x,t) by ko = Fig. 2.68 Solutions FDSES, u(x,t) by ko =
8,N =80 14,N = 160
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V1(Tb), v2(Tb),vM1=6.0010e-001,vm1=-6.0010e-001,vM2=4.5670e-001,vym2=-4.5670e-0(
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Fig. 2.73 Solutions by r = 0.1, N = 40 de-
pending on x
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Fig. 2.75 Temperature depending on
x for fixed t
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Fig. 2.77 Propane C3Hg concentra-
tion vs.x for fixed t
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Max-min values depending on t,N= 40
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Fig. 2.74 Maximal and minimal values de-
pending on t
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Fig. 2.76 Temperature depending on
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Fig. 2.78 O, concentration vs.x for
fixed t



2 Mathematical models for heat transfer equation

138
C3 of x c3end=0.4627 C4 of x c4end=0.2524
0.5 X 0.4
0 —+—1=0.0005
. —+—1=0.0005 0.3 —*—1=0.251
03 —*—t=0.251 —#—1=1.001
3 —k-t=1.001 3o ~*-1=3.501
0.3 —¢-t=3.501 ~=10.001
~*-1=10.001
0.1
0.
0 0.5 1 1.5 2 0 0.5 1 1.5 2
z/z0 Z/z0
Fig. 2.79 CO; concentration vs.x for Fig. 2.80 H,O concentration vs.x for
fixed t fixed t
8000
*
*
6000 * 3
*
*
©> 4000
*
2000 |
Pk
0 : : : : 01t - : : J
0 200 400 600 800 10C 0 200 400 600 800 1000
u[® C] u[® CJ
Fig. 2.81 Specific heat ¢, dependence on tem- Fig. 2.82 Thermal condutivity K dependence
perature u on temperature u
Temperature,MaxT1=139.0824,MaxT2=387.0970 MaxT=678.4273
400 ‘ ‘ ‘ ; 700 ‘
*
1 *
| 6007 %
%
| 500t N
oyl Y
1 © 400 *
= *
1 *
3007 -
1 ¥
L *
| 200 b
s ‘ ‘ 100 ‘
% 10 20 30 4c 0 0.02 0.04 0.06 0.08
t[min] X[m]
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Fig. 2.85 Backward averaging temperature Fig. 2.86 Backward temperature depends on
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Fig. 2.87 Comparison the temperature u of
numerical and experimental results
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Temp. of x,Tmax=5.2690

2 Mathematical models for heat transfer equation

Temp. of x,Tmax=5.2685
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Fig. 2.90 Profile of temperature depending on
xin fixed time tforw=1,00=6,P; =P =0.1
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Fig. 2.91 Profile of temperature depending on
xinfixed timetforw =4, =6,P, =P, =0.1
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Fig. 2.92 Profile of temperature depending on
xin fixed time tforw=1,00=6,P; =P =0.1
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Fig. 2.94 Temperature depending on(x,t) for
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Fig. 2.93 Profile of temperature depending on
xinfixed timetforw =4, =6,P, =P, =0.1
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Fig. 2.95 Profile of temperature depending on
x in fixed time t forw =3, L =2, 0 =6,P =
0.01,P, =0.001



Chapter 3

The hyperbolic type PDEs: H. Kalis, S. Rogovs,
2011 [74]

For numerical experiments we consider the linear initial-boundary
value problem for hyperbolic type equations in following form:

2 X 7 X,
azf’ Tot) 1o OT0el) = 0 (9T o p(x, ),

€ (0,L),¢ (Otf)
()Ta(gt o1(T(0,1) = T;(1)) = g1(7), (3.1)

(0, )
LD 4 65(T(L, > T(0)) = £2(0). € (0.1,
\T( 0) =Ty(x), ==~ = To(x),x € (0,L),

where k > 0,01 > 0, > 0,01 > 0,02 > 0(07 + 05 # 0), are the
constant parameters, 77 is the final time, 7;(¢),T;(¢), To(x), To(x) are
given functions.

For the 1-D hiperbolic heat conduction equation the parameters
a; = 1 and ap = 7 is the relaxation time (small parameter),
the function 7 (x,7) is the distribution of the temperature for modelling
an example intensive steel quenching or laser pulse duration.
In this case we have two problems: the direct problem with given func-
tion Tp(x)
from second initial condition and the inverse problem with unknown
second initial condition. For the inverse problem the function 7p(x)
is unknown and then we can used the aditional condition T (x,t7) =
T¢(x) , where Ty is given final temperature.

If T(x,t) =V(x,t)+ (C1(t)x+C(t)) then we have for the function
V(x,t) the problem with homogenous BCs

141
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92 d d
a5 4 oy ) = & (R 4 F(x, ),

0,L 0
xe (0,L),1 € (0.17). s )

MO _ v (0,1) = + oV (L,1) =0, € (0,1f),

wLm—v<»W§”— Vo(x),x € (0,L),
Volx

where Vp(x) = Ty (x) — C1 (0)x— C2(0), Vo (x) = Tp(x) — €1 (0)x— C5(0),
Flx,t) = f(x,t) = aa(Ci(0)x+Ca(1) — o (G (H)x +Ca(t)),

Ci(1) = (0281(1) + G122(0) + 6162(T; (1) ~ Ti(1))) /0.

Co(t) = (02T(1) + 02T (1) + 82(t) — 81 () + 010273 (1) L—

0281(t)L)/ 00, 0y = 01 + 02 + 01 02L.

For the inverse problem the function Vj(x) is unknown.

3.1 The analytical solution of the problem with homogenous BCs

Using the finite differences of second order approximation for partial
derivatives of second order respect to x we obtain from (3.2) the initial
value problem for system of ODEs of second order in the following
matrix form

{ U (t)+oqU(t) + kAU (1) = F(t),

U(0) = Up, U(0) = o, 3-3)

where A is the 3-diagonal matrix of N + 1 order, U (¢),U(t),U(t), Uy,
Uy, F (t) are the column-vectors of N + 1 order with elements u;(t) ~

. AV(xt) .. 02V (x;t
V(xj,0)), it () o 2800 i (1) e SV 0,

uj(0) = Vo(x)),1;(0) = Vo(x;), fi(t) = f(xj,2),j=0O,N.

We can consider the analytical solutions of (3.3) using the spectral
representation of matrix A = WDW? . From transformation V = WU
follows the seperate system of ODEs

{ V(1) +ouV(t)+kDV (1) = G(1),
V(0)=WTUy,V(0) =WT0y,

(3.4)

where V(1),V(t),V(t),V(0),V(0),G(t) = PTF(t) are the column-
vectors of M order with elements
Vk(t)7vk(t)7vk(t)ﬂVk<0)7vk(0)7gk(t)k =1,MM=N+1.

The solution of this system is the function
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{ vi(t) = exp(—0.501/ 0 ) (Cy sinh( Kyt ) + By cosh(kyt) )+

@ 1K exp(—O.S%(t — 1)) sinh(k(¢t — 7))G(7)dT, (3.5)

where

K = \/0.250512/053 — ki /0, B = v (0),Cr = 1 (0 (0) + 7= v1(0).
If ko / alz > 1, then the hyperbolic functions to need replaced with
the trigonometrical and the parameter xj with

\/lEuk/(xz —0.250?%/03.

Note: in (3.4) the first and last components of vectors Uy, Uy, F are

divided with v/2, but v (¢), vy (f) need to multiply with /2.

If k3 = 0, then v (r) = exp(—0.5¢/7)[¢(v;(0) + 0.5v(0) /T) 4+ v (0)].
For hyperbolic type equation (o # 0) by finite 67, 0, the system

of ODEs (3.3) can be rewritten in a normal form

= Bu-+F,u(0) = uy, (3.6)

where F,u, i, uq are the column-vectors of 2M = 2N 4+ 2 order in the
form

(O;F)T’ (U;U)T7 (U;U)Tv (U();Uo)T,

B is the matrix of 2N + 2 order in the following form

. 0 E
"\ kA —QE

E is the unit matrix of N+ 1 order, T is the symbol of transposition.

3.2 The analytical solution of the problem with nonhomogenous
BCs

The solution of the problem (3.1) with nonhomogenos boundary con-
ditions we can also obtained by Fourier method in the form [7]

T(x,1) = By vi(0)ye(x), where vi(r) = Jo T (e, 0)yi(x)dx =
d

i T (W (. () = 3.

Integrating this integral by parts twice we get

92
() =~y g )t

(T (x,1)y, (x) — ZEEDy, () P=E).
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From v (0) = foL To () (x)dx, v (0) = fo To(x)yx (x)dx,
PT(xt) _ ap PTlr) |
%

Tl 12
O,‘(‘ aTg 1) _ S follows the ODEs
0 (t) + o v (t) + kA (1) = Gi(t), (3.7)
where Gy (1) = RRy(1) + Ji £(x, 1)y (x)d,
Ri(r) = —[T (x,1)y (x) — 22y (00))] 125 = (0273 (r) + g2(¢) )y (L) +

(01T3(t) — &1(1))yx(0).
If 6 = oo then Ru(t) = Ty(1)y,(0).

If 61 = 0p = oo then yi(x) = \/zsin(kirx/L)

Ri(1) = Ty(1)y;(0) = T(1)y; (L) = S (Ti(1) — (= )T, (r)).
The analytical solution of this problem is also in the form (3.5), where
G, 1y, are replaced with G, A2

Similarly this method can be applied for the method of lines or
finite Fourier method (x = x; = jh, j = 0,N) with the finite differences

Uy R g—i'z‘ of the second order of approximation for the problem (3.1)
in the following form

ugej = M(x;,1),j=1,N—1,1 € (0,1),
w0 — o1u(0,7) —0.50M (0, t) =—01T;(t)) + g1(2),
u;7N+62u(L l‘) +0. 5hM(L l‘) = GQT( )) +g2( ) te (O,If),
u(x;j,0) = To(x;),u(x;,0) = To(x;), j =0,N,
(3.8)
where
M(x,t) =k (oii(x,t) + onii(x,1) — f(x,1)),x =x; ur 0 = (u1 —uo) /h,
Ug N = ()CN—XNfl)/h,uij: (qu—2uj+uj,1)/h2,uj:u(xj,t),j:
0,N.
The solution of the problem (3.8) we can obtain in the form
( ) Zlkv_'—ll Vk( ) k<x>7(x:xj)7
where
s0) = ] = 5l =) = (= +0-Shluo - )
(4, 9)n —hZ],V 1 Ujiyj-
Using the finite first Green formula [3] follows
(”7 _y)l%x)h = (yk’ _ufx>h + (MOyl;p _yléux,O) - (uNy,]%N _y](()uX,N>
and vy (1) = - (D%, —M] +y5 (01 Ty (1) — 81(1)) + Yy (02T (1) + £2(1))).-
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Therefore we have the ODE:s (3.7), where

Gi(t) = k(y5(01Ti(r) — 1(1)) + Y (02T (1) + 82(1))) + [, f1,

vi(0) = [To,5"],v(0) = [To,y*] and A? is replaced with . The ana-
lytical solution of this problem can by obtained from (3.5).

3.3 The wave equation with BC of first kind

We consider the second-order hyperbolic equation in one dimension
(0 =1,01 =0,k = a?)

2 X, X,
agt(z,) azagzl—I—f(xt)xE(OL)tE(Otf)
T(0,t) =0,T(L,t) =0,t € (0,5), 3.9

T(x,0) = Ty(x), 550 = Ty (x),x € (0,L).

Notice that replacing
92T (x,t) by tz 92 T(xt)
ot?

by x? and f by one,

the wave equatlon becomes > — a’x*> = 1 which represents an hyper-
bola in the (x,7) plane.

The change of variables
o1(x.1) = 2 (x, 1) = 50

transforms (3 9) into the first order system

{aw<xz)+c L) _ F(x,1 0,x € (0,L),1 € (0,17), (3.10)

o(x,0) = (Ty(x), To(x),)",x € (0, L),

where ® = (@1,0,)7,F = (0, f) are the column-vectors of the sec-

ond order,
0 -1
e~ (w0

is a matrix of the second order.

If (3.10) is set on a bounded interval (0, L) then the number of positive
eigenvalues of the matrix C determines the number of BC that can be
assigned at x = 0, whereas at x = L it is admissible to assign a num-
ber of conditions which equals the number of negative eigenvalues.
The matrix C presents two distinct real eigenvalues fa representing
the propagation velocities of the wave. Moreover, one BC needs to be
prescribed at every end point.
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We consider uniform grid in the space x; = jh, j =0,N,Nh = L.
Using the FDS we obtain from (3.9) the initial value problem for sys-
tem of ODEs of the second order in the following matrix form

{ U(t) +a’AU(t) = F (1),

U(0) = Un.U(0) = Uy G0

where A is the standart 3-diagonal matrix of N — 1 order in the form

2 -10..0 00
-12-1..0 0 O
0 0 ..-12 —1
0 0 ..0 —-12

U(t),U(t),Uy, Uy, F(t) are the column-vectors of N — 1 order

2 .
with elements u;(t) ~ T (x;,t)), ii;(t) = J g(;j’t),

uj(0) = To(x;),1;(0) = To(x;), f5(t) = f(x),1),j=T,N— 1.
The matrix A represented in the form A = WDW, (W =W =w 1)
is the symmetrical orthogonal matrix of N — 1 order with elements

Wi,j:\/%sinﬂ—ij i j=T,N—1.

N AR
The diagonal matrix D contain the eigenvalues of the matrix A :
W, = %sinz(%),n =1,N—1.
We can consider the analytical solutions of (3.11) using the spec-
tral representation of matrix A = WDW. From transformation V =

WU (U = WV) follows the seperate system of ODEs

{ V(t)+a*DV (t) = G(t),

V(0) = WU,V (0) = W, (3.12)

where V(t),V (t),V(0),V(0),G(t) = WF(t) are the column-vectors of
N — 1 order with elements vi(t), Vi (¢),vi(0),v,(0), g (t)k = 1,N — 1.
The solution of this system is

t

ve(0) = 24O G eur) v (0) cos(rer) + - [ sintte—0)ge(e)a.
0

Kk Kk
(3.13)
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where Ky = azdk,dk = Ug. For FDSES dk = )Lk.
We can used also the Fourier method for solving (3.9) in the form

= ¥ v O)
k=1

where yy(x) are the orthonormed eigenvectors

Vs vn) = Jo ye(x)yn(x)dx = 8.,), vi(t) is the solution (3.13), with
dp = A,k,Vk(O) = (T07yk)7‘}k(0) = (T()?yk)'

The solution we can also obtained in following form:

T(x,t) = Yy ags(t) sin ==, f(x,1) = ¥ bys(t) sin 22,

brs(1) = 2 [E £ (&, 1) sin BodE,

where ay(t) are the corresponding solutions of (3.13) by

ars(0) = 7 Ji To(&) sin T2 dE ar (0) = 7 fi Tol&) sin T2 dE, gi(t) =
bks(l‘>.
For he discrete problem (3.3) we can similarly obtain
fj(t) = Zlkvz_ll by (t) sin ﬂ/\?)
bis(t) = R XV () sin T k=T N =T,

and for the solution u;(¢) = Y~ axs(t) sin “T"J,

Uj (0) Zivill aks(o) sin ﬂTkja Iftl (0) ;{V 11 A <0> sin %7
Withaks( ) NZJ 1 uj( )Sln ]]\(/],dks( ) NZJ 1 uj( >51nnTk]

we need determine the unknown function a;,(t) of the equation (3.13).
For the FDSES the discreate eigenvalues p; are replaced with the

eigenvalues Ay, k= 1,N — 1.

Example 3.1. For numerical calculation we consider two examples:
1) the initial boundary value problem (3.9) with

f=0,Ty = sin(nx), Ty = 0,T (x,t) = sin(wx)cos(nt),

2) the problem with discontinues condition 7(0,0) # Ty(0)

V() _ 297V (xa)

,x € (0,1),r € (0,1f),

at? dx?
V(0,t) =1,V(1,t) =0,t € (0,15), (3.14)
V(x,0)= 0,240 — o v € (0,1).

Using tranformation T (xt) = V(x,t) — 1+ x we obtain the problem
(3.9) with the homogenous BC, where f = 0,7y =x— 1,7y = 0.
We have following MATLAB m.file Wavel:
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%$system ODE U_tt+a”2 AU=f with BC first kind
$t=Tb,u_(t=0)=x-1, £=0,a"2=1 ,L=1
function Wavel (N)
N1=N+1;MK=20; Tb=0.2;L=1;x=linspace(0,L,N1)"';
t=linspace (0, Tb, MK) ;
h=L/N;N2=N-1;NN=2x (N-1) ; a=1;a2=a"2;
1k=4/h"2% (sin(pixh/Lx(1:N2)'/2))."2;% FDS,eig-val.
1k0=(pi/L*(1:N2)')."2; % ODE , eig-val.
A2=zeros (N2,N2) ; x=x(2:N);
%$A2=A2-diag (ones (N2-1,1),1)-.
diag(ones (N2-1,1),-1)+2xdiag(ones(N2,1));
$A2=A2/h"2; $matrix A control
W= sqrt (2xh/L) *sin (pi*h/L*[1:N2] '%x[1:N2]);
A2=Wxdiag (1k0) *W; S$FDS or FDSES
y2=zeros (N2,1);
yl=ones (N2,1) .x(x-1);% 1. init-cond
$yl=sin(pi*x); % 2. init-cond exact
P=Wxyl;Pl=zeros (MK,N2) ; PO=Wxy2;
for k=1:N2
b=sqrt (a2x1k0(k)); %FDS or FDSES
P1(:,k)=P (k) *cos (b*xt')+PO0 (k) /b*sin(b*t');

end
P2=(WxP1') ';
prec=sin (pi*x)*xcos (pix*t);% exact
Mal=max (max (abs (P2-prec'))); $max error an.
Xl=ones (MK, 1) *x';Y1l=t'*ones (1,N2);
figure, surfc(X1,Y1,P2(:,1:N2)+1-X1)% analyt.real
%$figure, surfc(X1l,Y1l,abs (P2-prec'))% error anl.
colorbar
xlabel('x"), ylabel('t'), zlabel('u')
title(sprintf ('Anal.,tNr.=%4.1f, .
max=%9.7f',MK,Mal) ) $analytic sol.
Zl=zeros (N2,N2) ; El=eye (N2,N2) ;
y0=[yl;y2];AT=[21,E1l;-A2,2Z1];
options=odeset ('RelTol', 1.0e-7);
[T,Y¥]=o0del5s (@SIST, [0,Tb],y0, options, AT);
K=length(T);
precl=sin (pixx) *cos (pi*T') ;% exact
MAl = abs(Y(end,1:N2 )-precl(1l:N2,end)"');
MA=max (MAl) ; $ max error Matlab
$figure,plot (T, max (Y (:,1:N2) '-precl), 'kx')% max error on t
figure,plot (T, max (Y (:,1:N2) "+1-.
(ones(K,1)*x') '), 'kx')% max error on t
title(sprintf ('Max-sol.on t,time=. ..
%$8.6f,Max=%9.7f"',T(end) ,MA))
xlabel ('\itt'), ylabel('\itu')

figure,plot (x,¥Y(end,1:N2) '+1-x, 'ko') % real func.
grid on
title(sprintf('Sol.on x by Tb.,time =...

%$8.6f,Max=%9.7f',T(end) ,MA))
xlabel ('\itx'), ylabel('\itu')
Ma2=max (max (abs (Y (:,1:N2)-precl'))); %error Matlab
X2=ones (K, 1) *x';Y¥2=T*ones (1,N2);
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s« figure, surfc(X2,Y2,Y(:,1:N2)+1-X2)%real Matlab
55 %$figure, surfc(X2,Y2,abs(Y(:,1:N2)-precl'))%err
56 colorbar

57 xlabel('x'), ylabel('t'), zlabel('u')

53 title(sprintf('Matlab.,time=...

s9 %3.06f, Max=%8.6f',K,Ma2))% Matlab

o0 function F=SIST(t,y, AT)

61 F=ATxy;

For the first example by operator Wavel(10)we obtain following
maximal errors (ty = 1):
0.00748 (FDS), 5.10~° (FDSES by MATLARB solver), 10~'® (FDSES
analytical ) (see Figs. 3.1, 3.2).

Anal. tNr.=20.0,max=0.0074763 X107 Anal.,tNr.=20.0,max=0.0000000 X107

Fig. 3.1 Error with FDS by N = 10 Fig. 3.2 Error with FDSES by N = 10

For the second example by operator Wavel(40) obtained results
(t = 0.2) are represented in the Figs. 3.3, 3.4.
The coresponding 3-D graphics are in the Figs. 3.5, 3.6.

Sol. on x by Tb. time = 0.200000 Max=1.3724336 Sol. on x by Tb. time = 0.200000 Max=1.3724341

1to0 B 110000000

08 o 4 08

06 4 06

0.4 4 0.4

02 4 0.2

-02 02

Fig. 3.3 FDS solution depending on x by N = Fig. 3.4 FDSES solution depending on x by
40, =0.2 N=40,1=0.2
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Anal. tNr.=20.0,max=1.5510565

Anal. tNr.=20.0,max=1.5510565

SO
@S\'\ 1 o2
=S5
o x

Fig. 3.5 FDS solution by N =40, =0.2

Fig. 3.6 FDSES solution by N =40,r =0.2

In the Figs. 3.7, 3.8 we can see the maximum of the solution de-
pending on ¢.

Max-sol.an.on t, time = 0.200000, Max=1.5510565 Max-sol.an.on t, time = 0.200000, Max=1.5510565

14 14
12 * * * * % 12
PR S *
A
1 1 P A R
* *
08 08
s s *
06 * 06
04 04 *
02 02
* *
005 0.1 015 02 005 01 015 02

Fig. 3.7 FDS max. solution depending on ¢ by

N=40

Fig. 3.8 FDSES max. solution depending on ¢

by N = 40

3.4 The wave equation with periodical BCs

We consider the initial boundary value problem with periodical BCs

92T (x, 9°T (x,
G0 = 22 T8 f(x,1),x € (0,L),1 € (0,1),

o012

T(0,t) =T(L,t),

T(x,0) = Tp(x),

oT(04) _ IT(Ly1)

ox
dT (x,0)
Jt

5t € (0,7),

To(x),x € (0,L).

(3.15)
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Using uniform grid x; = jh,j = 0,N,Nh=1L, (N is even number) we
obtain the system of ODEs (3.11), where A is the 3-diagonal circulant
matrix of N order in the form

orA=2,-1,0,---,0,—1].
From the corresponding spectral problem of the matrix A follows that
(see chapterl)

W = ;—z(sin(kn/N)z, are the eigenvalues and w’J‘. = \/%exp(%tikj/N),
wk .= \/% exp(—27ikj/N),k, j=1,N are the elements of the biorthonormed

*,J
eigenvectors w*, wX, where (wk,w) = ZN 1 wkwT = Ok m>

The eigenvalues L are symmetrical as regards k=N/2

(with the maximal value ;—2) or Uy /24m = UN/2—msm = 1,N /2.

Using the matrices W, W, with the eigenvectors wX, wX in the matrices
columns we get AW = WD, WW, = E,W~! =W, ,A=WDW,, where
the elements of the diagonal matrix D is dy = i,k = 1,N.

For the differential spectral problem follows

hue= (2mk/L) WA (x) = |/ exp(2ik/ L),
wh(x) = \/%exp( 2mikx/L), (WK W)y = [Lwk (x)w (x)dx = Ok m>

k,m = —oo, 400,

The solution of (3.15) with the Fourier method we have obtained:
FOot) =X g (x), gi(t) = (Wh, ), T(x,1) = X vi(t)w* (x),
where vy (¢) is the solution of 3.13) by k # 0. For k = 0 we obtain

Vo(t) = V()(O)l‘ +V0(O) + fé(t — T)g()(f)df.

The solution we can also obtained in real form:

T(x,1) = Xy (e (1) cos 2280 + ay (1) sin 280) 4 050,

Fr,1) = X2 (bre(t) cos 225 4 by (1) sin 22k ) - boclt),

bult) = 30 F(E.1)cos Z2a8 by (0 = 1L 1E 0psin 5,
where ay.(t),a;s(t) are the corresponding solutions of (3.13) by

are(0) = 2 Ji Ty(€) cos ZHEdE  dre(0) = 2 J¢- To(&) cos THode
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ars(0) = 2 [ To(&) sin ZHEdE gy (0) = 2 [ Ty (&) sin 222
gk(t) = byc(t) or byy(t).

We can consider the analytical solutions of (3.11) using the spec-
tral representation of matrix A = WDW, . From transformation V =
W.U(U = WV) follows the seperate system of ODEs (3.12), where
the column-vectors are of N order.

The solution of the system (3.12) is in the form (3.13), where
k=1,N—1,d;, = . For k = N the solution is

v (1) = vn(0)t + vy (0) + f3(r — T)gk(T)dT. The solution of (3.11) is
in the form U = WV.

If d; = A4 then we can obtain the solution of FDSES in following way:
1)d), = A for k = 1,N,, where N, = N /2.

2)dk )'N k for k = Nz, No,N—1 dN 0.

We can obtam also the solution of the discrete problem in real form

wi(t) = i (are(r) cos 2oL 4 ay (1) sin Z28L) 4 e
Fi(t) = £ (bre(r) cos 25 + by (1) sin 253 + 252,

bkC() NZ lf]( )COSZﬂkJ bks() NZ lf]()31n2ﬂ_kj
where akc(t) aks( ) are the correspondmg solutions of (3.13) by

omkj . 2k

age(0) = N):1 To(x;) cos 25 dye (0) = ):NTo(x])cosTJ
2mkj 2k

as(0) = 2 YN To(xj) sin 2Ly (0) = 2 YN Ty (x;) sin 2202,

gk(t) bkc( ) or bks( )

2
The equation J ‘a/t(f’l) _ & V(“) +a?V(x,1) +g(x,1),

we can reduce to the equatlon (3.2) using transformation V (x,t) =
exp(at)T (x,t), where
a=const,k= 0oy = 1,00 =2a, f(x,t) = g(x,t)exp(—at). In this case
the homogenous BCs of first kind and periodical BCs remained.
For the equations L) — 2° T(“) +a®T (x,t) + f(x,1),
quations —55 a’T(x X
we can use preliminary analytlcal solutions considering only the new
values of the eigenvalues
1) for BCs with the first kind:
M = (452 — +a?, W = ;5 sin(km /2N )y — d?,
2)for perlodlcal BCs:
W = 2sm(l’m’/N) y—+a?, Ak—( )2 — +q?,
where Y is the coefficient in the Bahvalov FDS.
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3.5 Example of wave equation with the periodical BC for one
wave number

For numerical calculation we consider the initial boundary value prob-
lem (3.15) with f =0, Ty = sin(27x), Tp = 0, T (x,1) = sin(27x) cos(27t).
Using the Fourier method we obtain v (0) = 0,v(¢) = 0 for k # £1,

var(0) = L, vay (1) = +<28%  7(x,1) = cos(27r) sin(27x). We

have following MATLAB m.file Wave2:

%system ODE U_tt+a”2 AU=f with periodical BC
$t=Tb,u(x,t)=sin(2 pi x)cos(2 pi t),a=1, £f=0,N-even

function Wave2 (N)

N1=N+1;MK=20; Tb=1;L=1;x=linspace(0,L,N1l)';t=linspace (0, Tb, MK)
h=L/N;N2=N-1;a=1;a2=a"2;x=x(2:N1);

%$A2=A2-diag(ones (N2,1),1)-diag(ones(N2,1),-1)+2xdiag(ones(N,1));
%$A2(1,N)=-1; A2(N,1)=-1; A2=A2/h"2; %matrix A, control
NT=(1:N)'/L;

1k=4/h"2#* (sin (pi*h*NT)) . 2; %0(h"2)

10 lk=4/h"2x% ((sin (pi*h*NT)) . 2+1/3* (sin(pi*h*NT)) ."4);%0(h"4)
1 1k=4/h"2x ((sin (pi*h#NT)) . 2+1/3% (sin (pi*h*NT)) . 4+. ..

12 8/45% (sin (pi*h#NT)) ."6);%0(h"6)

13 1k=4/h"2x ( (sin (pi*h#NT)) . 2+1/3% (sin (pi*hNT)) . 4+. ..

14 8/45% (sin (pi*h*NT)) . " 6+4/35% (sin (pi*h*NT))."8);%0(h"8)

15 Ck=sqgrt (h/L);

16 1lk0=(2% (1:N) '*xpi/L)."2;

17 d=1k; %FDS

18 NH=N/2; d(1:NH)=1kO0 (1:NH);

o d(NH:N2)=1kO0 (NH:-1:1) ;d(N)=0; $FDSES

20 W=Ck*exp (2*%pixix (1:N) '*x'/L);

21 Wl=Ck*exp (-2*pi*ix (1:N)'*x'/L);

» A2=Wxdiag(d)*Wl; %FDS or FDSES

23 y2=zeros(N,1);

% yl=sin(2xpi*x); % init-cond

25 P=Wlkxyl;Pl=zeros (MK,N);PO0=Wlxy2;

26 for k=1:N2

27 b=sqrt (a2xd(k)); %FDS or FDSES
28 P1(:,k)=P (k) *cos (bxt')+P0 (k) /b*sin(b*t"');
29 end

3 P1l(:,N)=P(N)+PO(N)=*t"';

31 P2=(WxPl.').';% operator of transponation
» prec=sin (2xpixx)*cos (2xpixt) ;% exact

33 Mal=max (max (abs (P2—-prec')));%max error an.
34 Xl=ones (MK, 1l)*x';Yl=t'*ones(1l,N);

33 figure,plot (t',max(abs(P2(:,1:N).'—-prec)), 'k*x')% max error on t
3 title(sprintf('err. Max-sol.an.on t, Max=%9.7f ', Mal))
37 xlabel('\itt'), ylabel('\itu')

3 figure,plot(x,P2(end,1:N).', 'ko'")

39 grid on
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4 title(sprintf('Sol.an.on x by Tb.,Max=%9.7f ',Mal))

41 xlabel ('\itx'), ylabel('\itu')

42 figure, surfc(X1l,Y1l,abs(P2-prec'))% error anl.

4 colorbar

4 xlabel('x'), ylabel('t'), zlabel('u')

45 title(sprintf('err. anal.,tNr.=%4.1f,max=%9.7f',MK,Mal))

Using the operator Wave2(10)we obtan following maximal errors
(l‘f = 1)2
0.0755 (FDS-0(h?)), 0.0038 (FDS- O(h*)), 0.00024 (FDS -O(h°)),
0.00002 (FDS-O(h®)), 10~1? (FDSES).
By N = 40 the results are:
0.0049 (FDS-0(h?)), 0.000016 (FDS- O(h*)), 10~7 (FDS -0(h®)),2.10~10
(FDS-0(h®)), 10~ 1% (FDSES), (see Figs.3.9, 3.10)

err. anal. INr.=20.0,max=0.0049453 x10° err. anal. {Nr.=20.0,max=0.0000000 X107

Fig. 3.9 Error with FDS by N = 40, 0(h?) Fig. 3.10 Error with FDSES by N = 40

3.6 Example of wave equation with the periodical BC for
dfferent wave numbers

We consider the initial boundary value problem (3.15) by L =1,a =
1, f=0,Ty(x) = sin(2wmx), Ty = 0, where m is integer in (1,N) with
m < N /2. Then the exact solution is T'(x,?) = cos(2zwmt) sin(27wmx).
The solution of (3.15) with the Fourier method can be obtained in
following form:

T(x,t) = Y5 . vi(t)wh(x), where

vi(t) is the solution of 3.13) in the form vy (z) = cos(Kkit)vi (0, K =

Vi =27k,
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v(0) = fo To(x)wh (x)dx = 0, vy (t) = 0 for k # £m,

Vam(0) = 83 v, (1) = £SCM) T (x 1) = cos(2me) sin(27mx).
Therefore we have using the Fourier method the exact solution.

We can consider the analytical solutions for FDS of (3.11) using the
spectral representation of matrix A = WDW, . From transformation
V =W, U(U = WYV) follows the seperate system of ODEs (3.12).
The solution of the system (3.12) is

V(1) = cos(v/Dt)Vy, D = diag(uy) or in the form (3.13), where

vk(t) = COS(K‘kl‘)Vk(O, K = \/[LL_,

vk(O) = (W*U())k =0, vk(t) =0fork 7§ m,k 75 N —m.

From Uy, = e, w5 = wk follows v,,(0) = Vz—i.v,vN_m(O) = —\/2—]7.
Therefore U (1) = cos(y/tmt ) Uy,

where Uy = (sin(27mxy),--- ,sin(2mxy)’ is the column-vector of
the N order, x; = jh, j =1.N,Nh=1.

The solution can be obtained in the matrix form U (t) = W cos(v/Dt)W*Uj.
For the FDSES /I, = v/dyy = 27tm and we have also the exact solu-

tion.

Using the discrete Fourier transformation

U(1) = Xy an (0w (Awk = o), we get ag(r) = cos(/Het)ax (0),

where a;(0) = Up.wX =0 for k # m,k # N —m,

am(0) =YX ay_,(0) = —¥N.

We have

U (1) = an(O)W"+an—m(E)W" = SN cos(y /Tt ) (" —w") = cos(/Homt ) Uo.
For numerical calculation we consider the initial boundary value prob-

lem (3.15) with

tr=L=1,f=0,Ty=sin(2wmx),To =0, T (x,t) = sin(27wmx) cos(27wmt ),
form=1;2;3;4,N = 10.

We have following MATLAB m.file Wave2 m:

%$system ODE U_tt+ AU=0 with periodical BC
$t=Tb,u(x,t)=sin(2 pi m x)cos(2 pi m t),m<N-even
function Wave2m(N)

N1=N+1;MK=3;m=2; Tb=1;L=1;x=linspace(0,L,N1)"';
t=linspace (0, Tb, MK) ;
h=L/N;N2=N-1;a=1;a2=a"2;x=x(2:N1);
%$A2=A2-diag(ones (N2,1),1)-diag(ones(N2,1),-1)+2xdiag(ones(N,1));
$A2(1,N)=-1; A2(N,1)=-1; A2=A2/h"2; %matrix A, control
NT=(1:N)'/L;

10 lk=4/h"2x (sin(pi*h*NT)) ."2; %0(h"2)

© ® 9 m A W N =
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11 %$1lk=4/h"2x% ((sin (pi*h*NT)) . " 2+1/3% (sin(pi*h*NT))."4);%0(h"4)
12 %1k=4/h"2x% ((sin (pi*h*NT)) . 2+1/3% (sin (pi*xh*NT)) . " 4+. ..
13 %8/45% (sin(pi*h*NT))."6);%0(h"6)

14 %1k=4/h"2# ((sin (pixh*NT)) . 2+1/3* (sin (pi*h*NT)) . 4+. ..
15 %8/45% (sin (pi*h*NT)) . 6+4/35% (sin (pi*h*NT))."8);%0(h"8)
16 Ck=sqrt (h/L);

17 1k0=(2* (1:N) '*pi/L)."2;

18 d=1k; %FDS

19 $NH=N/2; d(1:NH)=1kO0(1:NH);

20 $%$d(NH:N2)=1kO(NH:-1:1);d(N)=0; $FDSES

21 W=Ck*exp (2%pi*ix (1:N) '*x'/L);

» Wl=Ck*exp (-2*pi*ix (1:N)'*x'/L);

;3 A2=Wxdiag(d)*Wl; $FDS or FDSES

2% yl=sin(2*pi*mxx); % init-cond

25 P=zeros(N,1l);P=Wlxyl;Pl=zeros (MK, N);

% for k=1:N

27 b=sqgrt (a2xd(k)); $%FDS or FDSES
28 P1l(:,k)=cos(bxt')*P (k) ;
29 end

3 P2=(WxPl.').';% this is transponation operator
31 P21=Wxdiag(cos (sqrt (d) *t (end))) *Wlxyl; $okei !
» prec=sin (2xpi*mxx) xcos (2xpi*m*xt) ;% exact

33 Mal=max (max (abs (P2—-prec')));%max error an.

3 Xl=ones (MK, 1l)*x';Yl=t'*ones(l,6N);

33 figure,plot (t',max(abs(P2(:,1:N).'—-prec)), 'kx')% max error on t
3 title(sprintf('err. Max-sol.an.on t, Max=%9.7f ', Mal))

37 xlabel('\itt'), ylabel('\itu')

3 figure,plot (x,P21, 'ko',x,prec(l:N,end), '*',x,P2(end,1:N), '=")
3 %figure,plot(x,P2(end,1:N)', 'ko')

4 grid on

41 title(sprintf('Sol.an.on x by Tb.,Max=%9.7f ', Mal))

2 xlabel('\itx'), ylabel('\itu')

43 figure, surfc(X1l,Y1l,abs(P2-prec'))% error anl.

4 colorbar

45 xlabel('x'), ylabel('t'), zlabel('u')

4 title(sprintf('err. anal.,tNr.=%4.1f max=%9.7f',MK,Mal))

Using the operator Wave2m(10)we obtan following maximal errors
(tf =1) (see Table 3.1):

Table 3.1 The FDS maximal error depending on order of approximation and m by N = 10
Method |m=1 m=2 |m=3 m=4
O(h?) 10.0050 [0.2958 [1.797 [—
O(h*) (1.21077|0.0110 [0.4301 |—-
O(h%) [3.1078 |6.107* [0.0911 |1.550

O(h®)) [2.1071913.107° [0.0219 |0.9724
FDSES [2.10713 |1.1071%]3.1015|1.10~ 13
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In the Figs. 3.11, 3.12 we can see the FDSES exact solutions by
m=4and N =10,N = 20.

Sol.an.on x by Tb.,Max=0.0000000 Sol.an.on x by Tb.,Max=0.0000000
‘ i T3 i 3 3
0.8 . 08 \\ “‘; \\ “‘; \ “‘,‘ \
%t A o % |4 % [*
04f| /A 04 | o A i)
\ [\ / \ | [ [ |
el AN 1 s T Y B
AR R S A R o R R G 1 G
R R e
sl | \/ T oaf | Lo | |
06 ‘ 4 ‘ . 08 bi ““‘ b\ ““‘ & \‘“‘ 4 ““
08 ‘ ‘ 1 -8 \ “S \ “S \ “.“ \
L ¢ P \é \es \es )
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 06 0.8 1
Fig. 3.11 FDSES solutions by N = 10,m = Fig. 3.12 FDSES solutions by N = 20,m =
4t r= 1 4.t r= 1

3.7 Example of nonlinear wave equation with the periodical BC

We shall consider the initial - boundary value problem for solving the
following nonlinear wave equation:

92T (x, 02

M) — P6W) 4 f(7),x € (0,L), € (0,17),
T(0,1) = T(L,r), 200 — 9TLD) 4 ¢ (0,1, (3.16)
T(x,0) = To(x), aT(Sf’O) = To(x),x € (0,L).

where g(T'), f(T) is nonlinear given functions. Using the FDS we
obtain from (3.16) the initial value problem for system of nonlinear
ODE:s of the second order in the following matrix form

{U(t) = —AG(U)+F(U), (3.17)

U(0) = Uo,U(0) = U,

where G, F are the vectors-column of N order with elements g; =

g(u(xe,1)), fi = fu(xe,1)), k=TN.
For using the Matlab solvers we need write the system of ODEs in the
normal form
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yi(t) =»2(1),
y’zgf) = —AG(y1) +F(y), (3.18)
Y1

0) = Up,y2(0) = Uy,

(U(t) = y1(z) or
¥(t) = A1G(y) + BF (y),

where y is the the column-vectors of 2N order with elements (y;,y>),
A1, B are the matrices of 2N order in following form:

0 E 00
w=(56)> 2= (&)

The numerical experiment with L= 1,7, =0.1 and F = aTh g(T) =
T°*! 6 =2,Ty = sin(27x), Ty = 0, = a = 0 is produced by MAT-
LAB 7.4 solver “odel5s”.

We have following MATLAB m.file svarst3per:

1 %PDE U_tt=AG +F with periodic BC

2 %t=Tb, A =WDW* with different aproksimation

3 function svarst3per (N)

4+ sigma=2;sigmal=sigma+l;beta=0;a=0;

5 N1=N+1; Tb=0.1;L=1;x=linspace(0,L,N1)"';

6 h=L/N;N2=N-1;NT=[1:N]/L; NN=2xN; NH=N/2;

7 1lk0=(2%pi/Lx (1:N)')."2; % precizas ipasv.

s 1lk2=4/h"2* (sin(pixh*NT))."2; %072

9 1lk4=4/h"2x ((sin(pi*h*NT)) . 2+1/3* (sin (pi*h*NT))."4) ;%074
10 1lk6=4/h"2% ((sin (pi+h*NT)) . 2+1/3* (sin (pi*h*NT)) . 4+.

11 8/45% (sin(pi+h*NT))."6);%0"6

2 1k8=4/h"2x% ((sin (pi*h*NT)) . 2+1/3% (sin (pi*h*NT)) . " 4+.

13 8/45% (sin(pi*hxNT)) . 6+ 4/35* (sin(pi*h*NT))."8);%0"8

14 W=exp (2*pixh*xix[1:N]'*[1:N]/L);x=x(2:N1); lk=zeros(N,1);
15 %a=1k2 (1)

16 %A2=zeros (N,N);

17 S$A2=A2+...

18 %$diag(ones(N2,1),1)+diag(ones(N2,1),-1)-2xdiag(ones(N,1));
19 %$A2(1,N)=1; A2(N,1)=1;A2=A2/h"2;

20 %$D=-hx(1./W)*B2*W;

21 1k (1:NH)=1kO0 (1:NH);

» 1k (NH:N2)=1kO(NH:-1:1); $FDSES

23 A2=-h*Wxdiag (1k8) *conj (W) ;

2% A=zeros (NN,NN) ;yl=(sin(2xpixx));y2=zeros(N,1);

5 y0=[yl;y2];2l=zeros(N,N);A=[Z1,eye(N,N);A2,Z1];

% B=[Z1,Z1; eye(N,N),zl];

27 options=odeset ('RelTol', 1.0e-7);
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28 [T,Y¥]=odel5s (@SIST, [0 Tb],y0,options,A, sigmal,beta,a,B);
29 im=max (abs (imag(Y(end, :))));

3 MA=max (abs(real(Y(end,1:N))));

31 figure,plot (x,real(Y(end,1:N) '), 'ko")

» grid on

33 title(sprintf('End time., maxim=%8.6f,time = .

34 %8.6f Max=%9.7f ',im,T(end),MA))

35 xlabel('\itx'), ylabel('\itu')

36 figure

37 plot(T(:),max(real(Y(:,1:N)")))

33 grid on

9 title(sprintf('FDS in time,N=%3.0f, time = %8.6f ',N,T(end)))
40 xlabel('\itt'), ylabel('\itu')

41 K=length(T);Xl=ones (K,1l)*x';Y1l=Txones (1,N);

42 figure, surfc(X1l,Y1l,real(¥(:,1:N)))

4 colorbar

4 xlabel('x'), ylabel('t'), zlabel('u')

45 title(sprintf('Surface,imag=%8.6f,Laika sl.sk.=%3.06f, .
46 Max=%8.6f"',im,K,MA))

47 function F=SIST(t,y,A,sigmal, beta, a,B)

4 F=Axy. sigmal+a*Bx (y) . beta;

In Table 3.2 are shown maximal values of solution max |y;(¢)| de-
pending on N and order of approximation.

Table 3.2 The maximal values max |y (f7)| depending on order of approximation and N

Method[N=10 |[N=20 [N=40
0(h?%) [0.6622[0.5515[0.5735
0(h*) [0.6078|0.5883/0.5928
0(h°) [0.5579]0.5947/0.5957
0(h8)) [0.5322[0.5961|0.5964
FDSES |0.5058|0.5950(0.5928

In the Figs. 3.13, 3.14 we can see the FDSES solutions by N =
20;40.

The numerical experiment with L = 1,7 = 0.8 and F = a(sin(T))P,
g(T) =T 6 =0,T) =sin'®(7x),T) = 0,8 = a = 1 is produced
also by MATLAB 7.4 solver “odel5s” with operator F = A %y.+! 4+
axBxsin(y).P;

In Table 3.3 are shown maximal values of solution max |y;(¢7)| de-
pending on N and order of approximation.

In the Figs. 3.15, 3.16 we can see the FDSES solutions by N = 80.

In the Figs. 3.17, 3.18 we can see the FDSES and FDS O(4?) solu-
tions by N = 80,7 =0.8.
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Table 3.3 The maximal values max |y (¢7)| depending on order of approximation and N

Method|N=10 [N=20 |[N=40 |[N=80
O(?) |0.4789]0.30760.4325]0.5038
O(h*) 0.4097|0.3890(0.4806(0.5227
O(h®) [0.4936]0.4124(0.5073(0.5242
O(h*)) 0.4593(0.3859(0.5163]0.5243
FDSES |0.5306(0.5243(0.5243(0.5243

In the Figs. 3.19, 3.20 we can see the FDSES and FDS O(/®) solu-
tions by N = 80,75 = 0.8.
We can see, that FDS methods give the solutions with oscillations.

FDSES method is without oscilations and the solution is positive even
it N =10.

3.8 The mathematical model for wave equations with convection

We consider the linear wave equation in the following form:

PT(x,t) 02T (x,1) 0T )
a2 oxx 9 ox

with the periodical boundary conditions (3.15) (a=const).

We can used the Fourier method for solving the initial-boundary
value problem in the form

T(xat> = ZkEZak(t)wk(x>7f(x’t) = ZkEZbk(t)Wk(x)v

where w*(x) are the orthonormed eigenvectors, by (t) = (f, wk(x))(see
chapter 1).

Then for the unknown functions ay(z) get the complex initial value
problem for ODEs of second order:

+ f(x,1) (3.19)

dr(t) +ar(t ) = by(t),

x(0) = Lfo To(s) exp =2 s,
(

(

Q

k 0) Lf0 TO( )exp 217rksds (3-20)

br(t) = Lfo f(s,t)exp 2”Tksds.

Q.

The solution of (3.20) is



3.8 The mathematical model for wave equations with convection 161

At )ag (0) + W&km) +O/ sin(\/j%i ) br(s)ds.

The solution with the Fourier method can also obtain in real form:

flxt) =Y (br(t)wk (x) + b_g(t)w*(x)) + bo—\/(lé) =
%Z?:l((bk(t)+bk(t))(wk(x)+W§(X))—i—(bk(t)—bfk(t))(wk(x)_wi(x)))_}_

bo(t) _
VL
Yo (bye(r) cos 272]‘)‘ + by(t) sin 272’“‘) + boz(t) ,

where 7 = (2k/L)? — 2mkai/L.w(x) = | Lexp(2mike /L),

)
wh(x) = |/ L exp(~2mikn/L) = wk(2),
bie(1) = 7 (bi(t) +bi(1)) =
77 Jo £ (W (x) +wh (x))dx
bis(t) = \i[(bk< ) —b_i(t)) =
Lfo f(s,1)sin 228 g,

Then,
T(x,t) = ¥ (are (1) cos 225 4y (1) sin 22 4 GoelD)

L
where a;(t),as(t) are unknown functions.

From f(x,t) _ azgl(?[) N (azgjgx 1) +a(9Ta(§7t))

follows f(x,1) = L (dke(t) cos 22+

(s (2) sin 272’“) + do%(tu—

Y ((are(t)Re(Ay) + ags (£)Im(Xy ) cos 22+

(axs (1)Re(A) — age(1)Im(2x)) sin 225,

because (ag(t) A +a_(t)A_i)/sqrtN = ar.(t)Re(A) + ars () Im(Ay),
i(ak(t)lk — a,k(l‘)ﬂ‘,k)/\/z = aks(t)Re(),k) — akc(t)lm()uk),

where a;.(1) = M\/%*k(l),aks(t) = % are the coefficients in

age(t) = cos(

%()Lf( )COSZﬂksds,
= Jo (e, 1) (WA () — K (x))dx =

%|~ i

the expression from the solution 7 (x,7).
Therefore we obtain the initial boundary value problem for the system
of two ODE:s:
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e (1) + ae () Re(Ag) + ags (1) Im(Ag) = b (1),
dis () + ars (1) Re(Ay) — age(t)Im(Ay) = by(2),

are(0) = 2 [ To(s) cos 2 ds, ay,(0) = 2 [ To(s) sin 228 s,
are(0) = 2 [0 To(s) cos 2 ds, . (0) = 2 [ To(s) sin 27;'<Sds

(3.21)
In the matrix form we have

A (1) + AAx(t) = Bi(1),Ag(0) = Ago, Ar(0) = Agg (3.22)

where

Ay = < —RI;%;L;)() ZZE;LZ; > is the matrix of second order,

Ax(t),By(t),Axo, Ao are the column-vectors with elements

(akc(l)aaks(t))a (bkc(t)vbks(t))7 (akc(o)vaks(()))> (dkc(o)adks(()))'

We can represented the matrix Ay in the form Ay = PDP!,

[ 05 —i (1 i

where P = (—O.Si 1)) - (0 5105)>

A0
b= ( 0 /mk))
where A7 = Re(Ay) — ilm(%), Re(Ay) = K Im(}y) = —22ke,
Then the matrix solution of (3 22)
A (1) = cos(v/Axt)Aro +A S sin(v/Agt)Aro+
Ak_0 S [3sin(y/A(t — s)Bk( )ds
with the transformations Ay (t) = P~1A(t),Ax(t) = PAi(t) can obtain
in the form

Ay(t) = cos(vVDt)Ayy+D %3 sin(\/l_)t);lko +D793 /sin(\/B(t —5)By(s)ds
0

where AkO = PilAk(),A.k() = PilA'ko,gk(t) = PilBk(l‘).

For this seperable we can determine the elements d.(t),d(t) of the
column-vector Ay

depending on the elements . (0) = a.(0) +iaxs(0), dxs(0) = 0.5iax(0) +
O.Saks (O),

Ak (0) = dge(0) + idig(0) g (0) = 0.5iciy o (0) 4 0.5¢i4(0),

bie(t) = bie(t) +ibs(t), bis(t) = 0.5ibyc (1) 4 0.5bks(t)

of the column-vectors AkO,Ako,Ek(t) we obtain the solution of the
ODE:s system (6.8) in following form
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(

a(t) = Re(cos( lkt))akc(())+qks(0)lm(cos( Ait))+
R )i 0) s O)m( )
Jo RO (5) by ()t (ST s,
akv(O = —Im(cos( )th))akc(o) ."i_aks(())Re(COS( )th))_
Im( Sl“(ﬂ_t“) ige(0) + digs (0) Re (2 \/%k[)) )—

|30 (Db () 4 by (5 Re () s,

(3.23)

For k = 0 we obtain a.(t) = [§ boc(s)ds + ao(0) +tdoc(0).

For numerical calculation we consider the initial boundary value
problem with f(x,t) = —2macos(27x)cos(2xt), Ty = sin(7mx), Ty =
0,7 (x,t) = sin(7mx)cos(mt).
From (3.20) follows:
T(x,t) = a1 (t) exp(27ix) + a_; (t) exp(—27ix),a; (0) = 5,a_1(0) =
—zll.,bl(t) =b_1(t) = —macos(2mt),
a1(0) =a_1(0) =0, = 4x% — 27ai,
A 1 471'2+271?al ap (t )—Cos(\/_t)/( i)+ (cos(Zﬂ:t) cos(\/_t))/(2i),

= —cos(y/A_1t)/ (cos(2mt) — cos(y/A_1t))

Therefore T(x,t)= (Cos(\/_t) exp(2mix) —cos(y/A_1t) exp 27tix))/(2i)+
((cos(2m) — cos(\/_t) exp(2mix)) exp(2mwix) — (cos(2mt)—
cos(y/A_1t))exp(—2mix))/(2i) = cos(2mt)sin(27x).
From (3.23) we have:

T()E, t)) = aj.cos(27x) + ayssin(27x), a1.(0) = 0,a15(0) = 1,41.(0) =
ais(0) =0,
bis(O) =0,b1.(0) = —2macos(2xt),a1.(t) = Im(cos(v/At))+

Re((cos(2mt) — cos(v/A1t)) /i,
ais(t) = Re(cos(v/A1t)), T (x,t) = Re(cos(v/Ait)) sin(27x).

We have for a = L = 1 following MATLAB operators:
t=0:0.01:1;1=4%7>—2%7w*i;v=real(cos(y/(1) t)); vl = cos(2* T xt);
plot(t,v,«".t,v1,/0).

For the discrete problem we have the system of N ODEs in the
form of (3.11), where a*> = 1 and the circulant matrix
A= ;,]_2[2% _(7+ OC)7070’ 07 _(y_ (X)],



164 3 The hyperbolic type PDEs: H. Kalis, S. Rogovs, 2011 [74]

with the eigenvalues py = (sm(kn’ /N)?(y—iocot %”),
and with the elements of the orthonormed eigenvectors

wh =/ exp(2mikj/N).wh; = \/ h exp(~2xikj/N)k, j = T.N.
Here Y= acoth(a),x = ah/2.

For the column-vector F (¢) elements f;(r) we similarly from the chap-
ter 1 obtain

17(6) = Ei2% (buc(t) cos 5 by (1) sin 23 ) + 250,

where

bie(t) = 5 X (1) cos 2,

bs(t) = X, £i(1)sin 2 k=T N,

bo(t) =bn(t) = \/NZ]]V:lfJ()a

boc(t) = bne(t) = %bo(f)asz.,c(f) = \/LN

b, (t) = % L)1 cos(jm), Na = 5, bys(1) = bws(t) =0,

*Nz ﬁk N2 Iﬁ + BN/Z
For the solutlon

uj(r) = Z;:Na (are(1) c0s 2K 4 gy (1) sin 2280 ) 4 uelt),
0) cos M + ays(0) sin z’;vﬁ) 4+ % 2(0)

1;(0) = L™ (ag(
1;(0) = :Na (dke(0) cos 2’fv"f+
ds(0) sin 2”kj) 4 %c(0)
with
are(0) = 2 XY u;(0) cos ZH, 4 (0) = 2 ¥, ;(0) sin 5L,

) . 2mkj . . 27k
akc‘(o)zz%/z]]yzluj( ) cos 71rvjvakv( )—NZ]': J(O)Sln%
we need determine the unknown functions

are (1), ags(t) of the following expressions

Fi(t) = i+ (Au) ; = XN (e (1) cos 2 g (1) sin 2261y 4 Gneld) |

thNzl (age(t)Re (i) + ags(t)Im(uy)) cos %4-
(aks( )Re(uk) —akc(t)lm(uk)) sin M)

Therefore, for the determine the functions ay.(t),ars(t) we obtain
the systems of ODEs (3.21,3.22) and the solution (3.23), where the
eigenvalues Ay are replaced with the discreate eigenvalues g,k =
1,N.
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3.9 The system of hyperbolic type equations with periodical BCs

We consider the initial-boundary problem of linear M-order system in
following form :

2

%z'"= L (s 50+ P 50) 4 v

T(0,1) = Tyu(L, 1), Znl00) — TnlL1) (3.24)
T(26,0) = Tuo(x), 2420 = 7,,(x). x € (0,L),m = T. M,

where K is the positive definite M-order matrix with different positive
eigenvalues Uk > 0 and the elements &, ¢, P is the real M-order matrix
with different real eigenvalues pp and the elements py, s, m,s = 1,M..
This system we can rewriten in the matrix form

azgg,t) _ %([Zaug,z) _HDau (x,t) L),
u(0,1) = u(L,r), 2420 — a”(g“) t € (0,2p), (3.25)

u(x,0) = up(x), =5~ = fio(x),x € (0,L),

where u, f are column-vectors with elements7;,, f,,,m = 1,M.

Using the Fourier series the solution we can obtained in the following
form:

u(x,t) = Yo (are(t) cos 2255 4 gy (1) sin 2280) C“’”T(t),

(1) = KL (b1 cos 22 2mkx | p, (¢)sin 2m) + el

i) = 2 F(E.0)c05 2548 by 0) = 3 1 4(.0)sin 2o,
where the column-vectors akc(t) ags(t) of the M order

are the corresponding solutions of the following differential equations

{ dkc(t) + 2‘klgakc(t) - %Paks(t) = bkc(t>7 (3 26)
s (1) + MKarg (1) + %Pakc(t) = bys(t), '

where
brc(t),bys(t) are the column-vectors of M order,

are(0) = 2 [ uo€) cos ZHEdE  ar(0) = 2 [ uo€ ) sin ZHEdE
01e(0) = 3 [ cos 20 , 4, (0) = [ ) sinH .

For the discrete problem (O(h*") order of approximatlon ) we have
the system of ODE:s in the following form:
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{v'j(t) = KAv;(t) +PA%;(t) + f;(t),t € [0,tf], 3o
V](O) = MO(XJ),VJ(O) = ﬂ()(Xj),Xj = ]thh :L,] = 17N7 '

where the column-vectors of the M order v;(t) ~ u(xj,t), fj(t) =
f(xj,1),
the expressions of the finite difference operators in multi-points sten-
cil with 2n+1-points (N > 2n+1)
AV} = g (CalVjmn Vi) o CLVjo1 7 j01) + Cov)),
_ _yn 2(n)*(~1)P~ B g
Co = =1 Cps Cp = i tapmo = 1o
A% = 4 (en(Visn = Vi) + o1 (Vi1 —vio1)),
cp= (m)A)P7 =1,n ( see section 1)
P~ p—plnp'P = b nye ,
We have following matrix representation for circulant matrices A =
—A = —5[Co,Cy,...,Cy,0,...,0,C, ..., C,

with the eigenvalues Ly = :—2 Y,—1Qpsin 2P (wk/N),Q
andAO:AO:%[O,Ch...,cn,o, 0, —cn, .. ,—cl],

_ 2(p=11)24r!
(2p)!

. . 0__ 2i 2npk
with the elgenvalues W, = —):p | CpSin=3—= =
2i ¢ip 27k 2p—-2 mk
28N Y0 gpsin X

( )24;7 1

where q p= W
Using the discrete Fourier method the solution we can obtained in the
following form:

vi(t) = >:k 1 (@ke(1) c0s 2241 4 ay (1) sin 2260 ) 4. (0,
£ilt) = <bkc<r>co b1 sin 2570) + 251,
”ke<t>— X1 £(0) cos R bis(e) = R 2 (1) sin 27,

where akc(t) ags(t) are the correspondmg solutions of (3.26) and
A, = 27k are replaced with e, Im (),

271k j

1e(0) = 3 E oy cos 24, 3, (0) = 3 £, ol sin 2.

xe(0) = 3 Xy o) cos 2R, g (0) = FEI. o) sim L.

This real form we can obtain also from following expressions
Acosy = iy cosg, A% cos = —|,LL,9\ sing, A sing = L sing,
Asin; = |,u,8| cosy, where sin, cosy
are N-order column-vectors with the elements
21k j 27k j

sin =5, cos =5~ and using the orthonormed conditions

21};1 sing cosy = leyzl sing sing = ):1}’:1 COSj COSg = %’5;“.
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Then for fixed frequency k in the initial data the solution can be writen
in the form u(t) = dy(¢) sing +d.(t) cosy,

where d;(t),d.(t) are unknown the time-depending vector-functions.
Then ii(t) = dj(t) sing +d.(t) cosy,

Au(t) = p(ds (1) sing +de(r) cosy), A%u(t) = || (ds (1) cosy —d(t) sing).
For FDSES, replaced the discrete eigenvalue g, Im( [,Lk) with Ay, <7 27k
we obtain the exact solutions for initial data with the frequency
<N/2.

The time-dependent difference equation (3.27) using the MN-order
column-vector v(¢) with the elements v (), j = 1,N,m = 1,M in the
form

= (—KQRA+PRA)(t)+ f(t) (3.28)
serves as an approximation to the differential problem, in the sence
that any smooth solution u(t) satisfies the approximation (3.27) mod-
ulo a small local truncation error ¥(h,t) = O(h*") :

2%u (1)
a2 = (KQA)u(t) + (PQQBJu(t) + f(1) + P (1), (3.29)
where MN- order matrices
) ki 1A - ki pyA p11AY -+ py yA°
K®A: ’p®A0: ,
kp A - ky pA pu A% - pa A

are Kronecker tensor products, u(t),u(0),i(0), f(¢) are MN column-
vectors with the elements
u;"(t),uT(O),ﬂT(O),f]m,m = 17_M7] = L_]V
Matrices also can be defined with the representation A = WDW*,
A? = WDW* and solved numerically with the Matlab using the op-
erator “kron”,
If eigenvalues of matrices K,P are A{(K) > 0,A4(P),s = 1,M then
exist the transformation of M-order matrices Wx,Wp and the repre-
sentation
K = WxDgWg ', P = WpDpW, !,
where Dx = diag(As(K)),Dp = diag(As(P))
are the diagonal matrices. From properties of Kroneker tensor product
follows (W* =W~1):
B=—-KQ®A + PRAY =

—(WxDxWi ' @ WDW*) + (WpDpW, ' Q WDOW*) =
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(Wk ®W)(~Dx @D) (W' @ W)+

(Wp @W)(—Dp QD) (W, ' QW*)=

(Wxk @W)(—Dx @ D)(Wx W)~ +(Wp QW) (—=Dpr @ D) (Wp QW) .
The eigenvalues

A (B) of matrix B are — Ay (K) + 1 As(P),k =1,N,s = 1,M with the
Re(A(B)) <0 and the system of ODEs is stable.

For the approximation, if v7'(r) = T (x;,¢),m = 1,M and for every
time moment t

h2nu(2n+2) .
U} = Au, +E2n—(é’)

2n+2)!
2n, (2n+1) (£,
I _ A0 A" (8)) _ 2n+1
I/tj—A uj—l—eznT)!f,gzn_—2zzzlckk n+ ,xn—j<éj<xn+ja

then
i(t) = Bv(t) + (1) + W(h),
where v, f, ¥ are MN-order column- vectors and ¥ (h,t) = O(h*"),or

En
19 (R, )| < 12 (g2 || K[ M2 (1) +

= |P||Mzn+1< )).
)

Epy = 2% Ck®t?

M = max | - is the maksimal estimate for corresponding deriva-
tives.
Given stability we can now estimate the global error e(t) = v(r) —u(t)

and to find, that the error e(t) is governed by the eror equation

d%e(t)

57 = Be(t) + ¥ (h,t).

The solution of this equation is given by e(t) = cos(v/Bt)e(0) +
sin(v/Br) (vB)1¢(0) +
(VB)~ i sin(v/B(t — ) (h, €)dE.
From Re(A(B)) < 0 and that ||¥|| and||e(0)|],||é(0)|| are of order
O(h*") follows the 2n- order of convergence rate later on ||e(t)|| =
o(h?).
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Chapter 4

1-D HHC equation: H. Kalis, A. Buikis, 2011
[39]

The hyperbolic heat conduction (HHC) problems are used for
modelling of intensive steel quenching [6].

We consider the following homogenous 1-D hyperbolic heat con-
duction problem in plate :

2 —
gt e = sk x e (0D 0y)
3—)67_050<T(07t)_Tl) ) 9)67 —{—OCKT(L,Z)—T,):O,

t € (0,17),

T(x,0) = To(x), 20 — vy (x),x € (0,1),

) 4.1)
where k is the heat conductivity, ¢ is the final time, 7 is the relaxation
time (7 < 1), 7;,T,, To(x) are given temperatures, o, o are the heat
transfer coefficients (for boundary conditions of first kind o = o) =
)

For the inverse problem the function Vj(x) is unknown and then we
can used the aditional condition T (x,t7) = Ty(x) , where Ty is given
final temperature. If the temperature 77,7, are constant values then
using the transformation V (x,1) = T (x,t) — Tj,(x) we have the problem
(ap = o = o) with homogenous boundary conditions (BC) of first
kind [6]:

2%V (x, aV(x, 2 (7.9V(x,

el VD) — 9 (RO x e (0,L),1 € (0,1),

V(0,¢) =0,V(L,t) 1 € (0,1f), 4.2)
V(x,0) = vo(x), 40 — vy (x),x € (0,L),

where vo(x) = To(x) — Tj,(x), T (x) = (xT + (L—x)T;) /L.

171
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If g =0,00 = o, 7T, = 0 then we have from (4.1) the following
problem with BC of the third kind

2 X X _ Y
oY) 1 V) — 9 ROVI) x e (0,L),1 € (0,17),
NOD — 0, LD 4 qv(L,1) =0, € (0,17), 4.3)
V(x,0) = To(x ),"V<"°> Vo(x),x € (0,L),

The following 1-D hyperbolic heat conduction problem in the sphere
with holes (0 < rp < r < R) by radial symmetry is:

92 T(rz) +ara(tn) _é (:;g 1)) 7€ (ro,R),1 € (0,27),
o el 1) =0 TR & 4T (R1) = 0, € (0,17),
T(1,0) = To(r), 2552 = Vo (r), r € (ro,R),

(4.4)
where r is the polar coordinate, R, rg are the radius of the sphere and
hole. For the inverse problem the function Vy(r) is unknown and then
we can used the aditional condition T'(r,¢7) = Ty (r) , where T is given
temperature.

Using the tranformation V = Tr,x = r — ro we can the problem (4.4)
reduced to the following hyperbolic heat conduction problem in the
plate:

PR v (x, P)
v Sfé‘”+ el — %({; VD) 1 f(x+ro,t),x € (0,L),
MOD _ 61v(0,1) =0, D 4 65V (L,1) = 0,1 € (0,17),
V(x,0) = To(x +ro) (x + ),‘W(“)) Vo(x+r0)(x+7r0),x € (0,L)
4.5)
. 1 . 1 . _ Vix+rg,t)
where 61 = 0o+ -, 02 = 01 — . > 0,L =R—ro, T (r,1) = =17 2%

In the case of full sphere (r9 — 0) the first BC condition is
V(0,7) =0 or 61 = o and T(0,7) = 2404,

4.1 The methods for solving the direct problem with the BC of
first kind

We consider uniform grid in the space x;, = kh,k = 0,N,Nh = L.
Using the finite differences of second order approximation for partial
derivatives of second order respect to x we obtain from (4.2) the initial
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value problem for system of ordinary differential equations (ODEs) of
second order in the following matrix form

{ tU(t) + U (t) + kAU (1) =0, (4.6)

U(0) = Uop,U(0) = Va,

where A is the standard 3-diagonal matrix of N — 1 order with ele-

ments -5{1;—2:1}. U(t),U(t),U(r),Uo, Vy are the column-vectors of
. . IV (xgt) -

1\72— 1 order with elements u(t) = V (xi,t)), ti(t) =~ %,uk(t) ~

IV 1 (0) = o (xx), v (0) = Vo (), k = LN — 1.

ot?
The matrix A have the eigenvalues uk:;—z sinz(%‘,).

The system of ODEs (4.6) can be rewritten in a normal form
i = Bu,u(0) = up, 4.7)

where u, i1, ug are the column-vectors of 2N — 2 order in the form
(U;0)",(U;0)T,(Up: V)T,
B is the matrix of 2N — 2 order in the following form

0 E
b= (—rll'cA —rlE)

E is the unit matrix of N — 1 order, T is the symbol of transposition.
For the difference sheme with exact spectrum (FDSES)

the matrix A is represented in the form A = WDW, where W = W !

is the symmetrical orthogonal matrix with elements w; j= ]%] sin ”Wij,

i, j=1,N — 1. The column of the matrix W and the diagonal matrix D

contains the first N — 1 orthonormed eigenvectors

wi(xj)=4/ % sin mzxj7(xj = jh, j=1,N — 1) and eigenvalues

dy = (km/L)?, k=1,N — 1 from the differential operator (—g—xzz) (AW =
WD).

We can consider the analytical solutions of (4.6) using the spectral
representation of matrix A in form A = WDW.
From transformation P = WU follows the seperate system of ODEs

{ tP(t) 4+ P(t) +kDP(t) =0, (4.8)

P(0) = WU, P(0) = WV,
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where P(t),P(t),P(t), Py, P(0) are the column-vectors of N — 1 order

with elements pi(1), pi(1), i (t), pr(0), p(0),k = 1,N — 1.
The solution of this system is the function

Pi(t) = exp(=0.5/T) (R (pe(0) +05pe(0)/ D)+ 4 )
cosh(kyt) pr(0)),

where k; = 1/0.25/12 —kdy /7. If 4kd;t > 1, then the hyperbolic

functions are replaced with the trigonometrical and the parameter Ky

with \/kdy /T —0.25/72.

If & =0, then py.(¢) = exp(—0.5¢/7)[t(px(0) +0.5px(0)/ ) + pi (0)]-
We can consider also the analytical solutions of (4.2) using the

Fourier method in following form

=Y pult)wi()
k=1

where wy(x) = /2/Lsin(mwkx/L) are the orthonormed eigenvectors

(Wr, W) = fo Wi (X)W (x)dx = & ,,) of the differential operator (%)
with homogenous boundary conditions ( &, — the symbol of Kro-
necker), py(t) is the solution (4.9),with pr(0) = (vo,wy), pr(0) =
(V07 Wk) .

For the approximations the derivatives with matrix of derivatives
we can consider nonuniform grid with the grid points of the roots of
the Chebyshev polynomials of the second kind

X =0.5L(1 —cos(n(k—1)/N)), k=1,N+1. (4.10)
Using this grid points we can approximate the derivative aa_sz in the

equations (4.2) with matrix Dg of derivatives of N + 1 order in the
form [10]
2

V' =DV,
where V), = (V(Xl,l),V()C2,t), s 7V(xN+17t))T7
V= (V"(x1,1),V"(x2,1),...,V"(xn+1,))T are the colomns-vectors
of the corresponding values V" (xy,t) ~ 9%V (x;,t) /dx>.
From the Lagrange interpolation follows, that the elements of matrix
D, are in the form



4.2 The methods for solving the direct problem with the BC of the 3-th kind 175

dl(x;)
dx

dj= JJhk=1,N+1, (4.11)

o(x)

o () (x—xi)
0= Hﬁ(vzﬁl (o — xx).

For this nonuniform grid the interpolation error is small [10].

The determinant of derivatives matrix D? are equal to zero (this matrix
are singular). Therefore to need decrease the orders of this matrix to
N — 1 order using the homogenous boundary conditions and deleting
the first and last columns and rows.In this case we need in (4.6, 4.7)
replaced the matrix A with —D2.

where [;(x) = are the elementary Lagrange multipliers,

4.2 The methods for solving the direct problem with the BC of
the 3-th kind

Similarly we obtain from (4.3) the initial value problem for the sys-
tem of ODEs (4.6,4.7), where the column-vectors and unit matrix are
of the N + 1 order, B is the matrix of 2N + 2 order.

The 3-diagonal matrix A of N 4 1 order (similarly from Chapter 2,
o1 = 0,0, = &) can be represented with difference

operator of second order approximation and solved the corresponding
spectral problem.

The spectral problem Ay" = p,y",n = 1, N + 1 have following solu-
tion

" = Cy(—= cos(pnxo),cos(pux1), ...,co8(Puxn_1),
{y (5 cos(paxo), cos(pux1) (P,

\%cos(pan)T, Uy = % sin® (pnh/2),
where p, are the positive roots of the following transcendental equa-

tion L
tan(p,L)sin(p,h)/h=a,n=1,N

and the constants C,, = \/ I +0.5hsin(2§ ) an(pih) give the orthonormal

eigenvectors y",y" with the scalar product [y",y"] = 0, for n,m =
IN.

For py1 from (4.12) follows that py11 =2aN/L— py and Uy =
uy. Therefore for n = N + 1 we have following special solution of the
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spectral problem:

{ V' = Cal 5 cosh(pnxo), cosh(prxr). o cosh(prin-1),

%cosh(pan)T,,un = —;—zcoshz(pnh/Z)7 n=N+1

where py.1 is the positive root of the new following transcendental
equation
tanh(pNHL)sinh(pNHh)/h =00

— 2 :
and the constants Cyy1 = \/ LF05hsinh(2py L)/ anh(py k) 1Y€ the or-

thonormed eigenvectors y",y" with the scalar product [y",y"] = &,
foralln,m=1,N+1.

The matrix A can be represented in form A = WDWT, where the
column of the matrix W and the diagonal matrix D contains N + 1
orthonormed eigenvectors y" and eigenvalues u,,n=1,N+ 1. From
WTW = E follows that W1 =wT,

The solution of the spectral problem for differential equations

—"(x) = A%y(x),x € (0,L),'(0) = 0,y (L) + ay(L) = 0,
is in following form y, (x) = C, cos(A,x),

_ 2 _ 2
Cn = \/ LH05sin(2A4,) /A \/ Tra)(a257) Where
On>ym) = fOL Yn(X)ym(x)dx = 8 and A, are positive roots
of the following transcendental equation:

tan(A,L)A, = a,n=1,2,3,...

We can used also the Fourier method for solving (4.3) in the form
V(x,t) =Y pr(t)ye(x),
k=1

where yi(x) are the orthonormed eigenvectors, py(z) is the solution
(4.9),with pr(0) = (To,yx), Px(0) = (Vo,y)-

For the FDSES the matrix A is represented in form A = WDW7
and the diagonal matrix D contains the first N + 1 eigenvalues d,, =
A2, n=1,N +1 from the differential operator (—59—;2) correspondly.

Similarly we can consider the analytical solutions of (4.6) using
the spectral representation of matrix A in form A = WDW7.
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From transformation P = WU follows the seperate system of ODEs
(4.8), where P(0) = WUy, P(0) = WTVj are the column-vectors of
N + 1 order. The solution of this system is in the form (4.9).
Note: In this case to consider the scalar product the first and last
components of vectors Up, Vg are divided with v/2, but py (1), py11(t)
need to multiply with /2.

Using averaged value with constant function [9]
V(t) = %fOLV(x,t)dx,V(L,t) = 7(t) from equation (4.3) follows the
initial value problem for ODEs

L L
T+ 45 = 0,7(0) = /To(x)dxﬁl(o) = /Vo(x)dx, (4.14)
0 0

- 2
where y=ka/L,V = % ' = L2,

The analytical solution of this problem is
7(0) | ¥(0)

——— ) sinh(z

B+ 5eg) SO

where f§ = 2%\/1 —4zy. Ity > %, then the hyperbolic function is re-
placed with the trigonometrical and the parameter 3 with % Vaty—1.
If B =0, then ¥(r) = exp(—0.5¢/7)[7(0) (1 +0.5¢/7) 4+ 17 (0)].
Using averaged value with quadratic polynomial[9]

¥(t) = exp(—0.5¢/7)[#(0) cosh(¢f) + (

V(x,1) = 9(t) +m(t)(x—0.5L) +e(t)((x — 0.5L)> — L?/12)

with the unknown functions m(t),e(t).
We can determined this functions from BC (4.3) in following form:
m(t) =e(t)L = —%ﬁ(r}. Then
2+ La— ox*/L
1+La/3

V(x,t) ~ 0.5%(t)

If o = 0 then V(x,1) = ().
The corresponding solution ¥(¢) of the problem (4.14) remains one’s
own form, where y = kot /(L +L*a/3).
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4.3 The methods for solving the inverse problem

For the inverse problem the vector Vj in (4.1,4.6) is unknown and we
have additional condition U (t7) = uy, where u; is the vectors-column
with elements usy = Tp(x;),k=1,M, (M =N—1(@42)orM =N+1
4.3).

The analytical solutions of this problem can be obtain from (4.8)
replaced the second initial condition P(0) = WV, with P(ty) = Wuy
for the problem (4.2) or P(0) = W'V, with P(ty) = WTuy for the
problem (4.3).

Then the solution is following

Pi(t) = exp(=0.51/T) [ G (exp (0.5t /Dpeler) =y 1)
wi(0) cosh(iity)) + cosh(kit) pi(0)],

where py(t7) are the components of vector P(ty) (the note for the
vectors Vp,uy in (4.3) is valid).
From (4.15) follows that the second conditions is in following form

px(0)
2t

pr(0) ) lexp(0.5t7/7) pi(tr) — pi(0) cosh(kyt )] —

- sinh(xts
Vo =WP(0).
Replaced this expression in (4.9) we obtain the solution (4.15).

For Fourier method we obtain the Fourier coefficients pi(t), pr(0)
from (4.15), where pi(tr) = (ur,Qk), Vo(x) = Ly pr(0)Qk(x),
Ok (x) = wy(x) for the problem (4.2) or Qy(x) = yi(x) for the problem
(4.3).

Using averaged method (4.14) for given value
ty) =1 JaV (x,t7)dx we can obtained the value ¥ (0) in the form

Bexp(0.5t7/7)
sinh(t¢f3)

I B =0 then 7(0) = #(t;) X222 — 5(0)(1/27+0.5/7).

From averaged method with quadratic polynomial follows that

11y 2+Lo—ox? /L
Vo(x) ~ 0.57 (0) e 2/t

v(0) =¥(tf)

—5(0)(B coth(t,B) +0.5/7). (4.16)
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4.4 The methods for solving the problem in the sphere with holes

We obtain from (4.5) the initial value problem for system of ODEs
of second order in the matrix form (4.6), where A is the 3-diagonal
matrix of N 4+ 1 order in the form

0
0

24+ho;r -2 0 ... 0 O
-1 2 -1..0 0
0 0 0..-12 -1
0 0 0..0 -22+4+ho,
ur(0) = Up(xx +ro) (xx +r1),vi(0) = Vo (xx + ro) (xx +ro),k = O,N.
The matrix A can be represented in form A = PDPT (AP = PD)
where the column of the matrix P and the diagonal matrix D contain
M orthonormed eigenvectors y" and eigenvalues p,,n = 1,M, (M =
N + 1 for finite value of 61 and 6, M = N for infinite 67 ), T is the
symbol of transposition. From P’ P = E follows that P~! = PT
We can consider the analytical solutions of (4.6) using the spectral
representation of matrix A (A = PDPT)
and obtain the seperate system of ODEs (4.8) with the solution (4.9).
Similarly we can obtain the solution of the inverse problem.

4.5 Some examples and numerical results
4.5.1 The initial-boundary problem with the BC of first kind

The numerical experiment for the direct problem (4.2, 4.7) with
L=k=1,1=0.1,tf{=02,7, = 1,7, =0,Ty = 0,Vp = 0 (the ini-
tial and boundary conditions are discontinuous) is produced by MAT-
LAB solver ”odel5s” or with help of calculation the matrix-function
exp(Bt), using Matlab operator expm(Bxt). The solutions of the prob-
lem (4.7) is u(t) = expm(B xt) * uy.

For the solution of the inverse problem with the conjugate operator
(4.7) we have w(t) = expm(BT x (t; —t)) *w(t7) but for the method of
superposition U;(r) = expm(B 1)« U; o, where U; ,i = 1;2 are special
initial conductions.

For hyperbolic equations (4.2) (without the term %) follows that
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at time 77 a front of the right-moving wave will reach point x¢(t7) =

r_ _
TR 0.63245 [6].
The grafics of numerical results for direct problem obtained from the

method of FDSES by N = 30 are in the Fig. 4.1 and Fig. 4.2.

For testing the inverse problem for V = 1 is obtained the vector uy
by solved the direct problem. Then by solving the inverse problem for
given uy is obtained the vector V. The maximal relative error for val-
ues Vo is 1077 for N > 20.

In the Figs. 4.3, 4.4 we can see the results obtained with finite differ-
ences approximation and FDSES method by N = 200.

Exact FDS, U(t) by x=0.5,N= 30 time-numbers= 536 Exact FDS,U(x) by t= 0.200000,N= 30, U(0.5) by N/2=0.042536

07

0.9 o

06

05

0.4

03

08 9y
07 o
[ o
305 o

04

02 03

0.2

0.1
0.1

Fig. 4.1 Solution depending on ¢ by x = 0.5 Fig. 4.2 Solution depending on x by r = 0.2

Final sol. by t<T,

=0.20,error = 0.0000,error, . =0.0000 Final sol. by =T,  ;=0.20,error, = 0.0000.error,. =0.0000

)

Fig. 4.3 Solution of FDS by N =200, = 0.2 Fig. 4.4 Solution of FDSES by N = 200, =

0.2

In the Figs. 4.5, 4.6 are represented the results of Fourier obtained
from the series
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V(x,t) = —2exp(—0.5t/7) Z
k=1
with wy(0) = —Y2 4 (0) = 0,00
observed).

181

sinh( k)

h(xt
(cosh(kit) + 2K, T

).

~ 200,N = 80 (the Gibbs efect is

Using the matrix of derivative Dg in (2.2) the coresponding results
with oscilations by N = 100 can be seen in Figs. 4.7, 4.8.

Furje method,U(x) by t= 0.200000,K= 60, U(0.5) by N/2=-0.494696
2

08

06

04

02

-02

Fig. 4.5 Solution T(x,0.2) with Fourier
method by N = 80

-0.1

Fig. 4.7 Solution (U(0.5,¢)) with matrix-
derivatives method by N = 100

Direct sol. U(x,1), time-numbers=10.000000

Fig. 4.6 Solution T (x,) with Furier method
by N =80

Matrix of derivat. N=100, time = 0.200000 Y(Tb,N/2))=0.486368

@&9&

02
0

Fig. 4.8 Solution U(x,t)
derivatives method by N = 100

with matrix-

4.5.2 The initial-boundary problem with the BC of 3-th kind

The numerical results for the problem (4.3, 4.7) are obtained for in-

tensive steel quenching models with k = 0.0001738602 (k =

k=
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429% - the heat conductivity, p = 1.05.104% - the density of
the steel, ¢ = 235kgic - the heat capacity),o0 = % (a = %,h - the

heat transfer coefficient) and L = 1,7 = 0.1;0.5,Tp(x) = 600,17 =

5,Tr(x) = 0,N = 10;20. We have following inequalities for eigen-

values A, : (n—1.5) <A, < w(n—0.5),n=1,N+1.

The first 6 eigenvalues A, are: 0.2614; 3.1637; 6.2943;9.4322; 12.5719;
15.7124.

For 7 =0.5 we have Vy = —1200,107; —1200,161; —1200,047 corre-

spondly for superposition, conjugate operators and averaged methods
(see the Figs. 4.9, 4.10).

For 7 = 0.1 we have correspondly V; = —6000,0527; —6000,0532;
—5999,9927 (see the Figs. 4.11, 4.12).

Solutions on t by max (U(x1),V(0)=~1200.107147,t = 0.50

Surf. tNr.=136.0,V01=-1200.16098,V02=~1200.16148

500

400

J T

300

200

100

Fig. 4.9 Solution max(U (x,t)) depending on Fig. 4.10 Solution U(x,t) by t=0.5,ty =5
thy t=05t;=5

Solutions on t by max (U(x.1)).V(0)=-6000.052743,t, = 0.10 Surf, {Nr.=206.0,V01=_6000.05320,V02=_6000.05319

500:

400

> 300

200

Fig. 4.11 Solution max(U (x,t)) depending on Fig. 4.12 Solution U (x,t) by T=0.1
tby t=0.1
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4.5.3 The initial-boundary problem for holow sphere

The numerical results for the problem (4.4, 4.6) are obtained by the
above-mentioned parameters with

R=8,rp=1,Ty(r) = 600;600;:’;(’) 1 =0.5;5,T¢(r) = 0,N = 10;20.
In the Figs. 4.13, 4.14, 4.15 are presented the results of the calculation
by 7=0.5, T()(r) =600,ry = 1,tf =5, where V; = —1200, 1.

In the Figs. 4.16, 4.17, 4.18 are presented the results of the calculation
by 7=0.1,Ty(r) = 600,r9 = 1,y = 0.5, where V = —6000, 4.

Surf. INr.=147.0

Sol.of superpos. on t by max (U(x,{)),max V/(0)=-1203 439378, = 0.50

500
400
> 300

[
I
3
*
*
¥
%
%
%
%
%
%
%

200

[

0 1

2 3 4
t

Fig. 4.13 Solution depending on ¢,r by T = Fig. 4.14 Solution max|u| depending on ¢ by
0.5,Ty(r) = 600 T=0.5,Ty(r) = 600

V(0)superp. meth,U(t),V(0)analyt. Av.val.V(0)=~1200.2941,max val. = ~1199.3507

Surf. INr.=90.0

0% * * *

200

400 0 V(0)superp.

N * Ul >
-600 *  V(0) analytical

-800

-1000

-1200¢ ® ®

Fig. 4.15 Functions Vy, Uy depending on r by Fig. 4.16 Solution depending on #,r by T =
7=0.5,To(r) = 600 0.1,To(r) = 600

In the Figs. 4.19, 4.20 are presented the results of the calculation by
T= O.S,To(r) = 60012::%,1”0 = 1,l‘f =5,
where the averaged value V; = —600, 1.

In the Figs. 4.21, 4.22 are presented the results of the calculation by
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Sol.of superpos. on t by max, (U(x,t)),max V(0)=-6020.299475,t, = 0.10

500°
400
= 300

200

100 i

Fig. 4.17 Solution max|u| depending

7=0.1,Tp(r) = 600

T= 0.1, T()(I’) = 600;;:;% , 1o
where the averaged value Vj

on ¢ by

V(0)superp. meth,U(t),V(0)analyt, Av.val.V(0)=-600.1049,max val. = -0.4843

0% * * * * * * * * *
®
200 °
S V(o)superp.
400 @ * Ultyy)
® +  V(0) analytical
> -600 @
e
-800 o
1000 ©
®
1200
-1
1 2 3 4 5 6 7 8

Fig. 4.19 Functions Vy,Uy depending on r by

T=0.5,Ty(r) = 600 52

R—ry

V(0)superp. meth,U(t).V(0)analyt. Av.val.V(0)=-3000.4705,max val. = ~2.6369

-1000 ®
~2000
> -3000
-4000
-5000

-6000

Fig. 4.21 Functions
7=0.1,Tp(r) = 600

Vo, Uy depending on r by
r—r
=0

V(0)superp. meth,U(t).V(0)analyt. Av.val.V(0)=-6001.4567,max val. = -5995.7824
1000

04 T T

-1000
-2000

0 V(0)superp.
> 3000 % Ul

+  V(0) analytical
-4000
-5000

-6000¢ @ ® e © © © @ @ o

-7000
1

Fig. 4.18 Functions Vp, Uy depending on r by
7=0.1,T(r) = 600

= 1,1, =0.5,
—3000, 5.

Surf. tNr.=146.0

600
600
500 / 500
0
4007 ( //g 400
300 V% i
///
B %%? 300
200 ' /ég
1004 200
0 100

Fig. 4.20 Solution depending on ¢,r by 7 =
0.5, Tp(r) = 600 52

R—rg

Surf, tNr.=90.0

Fig. 4.22 Solution depending on ¢,r by 7 =
0.5, Tp(r) = 600 =2

R—ry
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4.5.4 MATLAB programm for solvig PDE in the holow sphere

We consider the m.file hipSiltLL.

%$SODE tau*U_{tt}+U_t+a2 AU =f with solvers ,3.kind boun-cond.
%Operator method and superposition,anal. sol.
% $x=r-r 0,r_ O0;R-radii of sphere,L=R-r_0
%$$t=Tb,U_{ (t=0) }=600,U_{t (t=0)} =v_0=?,U_t=T =0,
$SU_{x(x=0)}-1/r0 U{(x=0)}=0,U_{x(x=L)}+ (alfa-1/R)U_{ (x=L) }=0
%$FDSES,method of lines, use m.file"ipas3v(N,sigl,sig2,L)"
function hipSiltLL(N)
MK=50; r0=1;R=8;N1=N+1; Tb=0.5;L=R-r0;x=linspace(0,L,N1)"';
t=linspace (0, Tb, MK) ; h=L/N; NN=2%N1; tau=0.1;k1=429;
c1=235;r1=10500;a2=kl/ (clxrl);
alfa=60/429;sigl=1/r0; sig2=alfa-1/R;
[1k0, 1k,W]=ipas3v (N, sigl,sig2,L); % solve the spectral problem
Zl=zeros (N1,N1) ;El=eye (N1,N1l) ;A=zeros (NN, NN) ;
y1=600.* (x+r0);yl (1)=y1 (1) /sqrt(2);yl (N1)=yl(N1l) /sqrt(2);
P=W'xyl;Pl=zeros (MK,N1l) ;PO=zeros(N1,1);
for k=1:N1

b=sqrt (0.25/tau”2 -a2+1lk(k)/tau);
P1(:,k)=P (k) *exp(-0.5%t'/tau) .+ (cosh(b*t')-...
sinh (bxt') xcoth (b*Tb)) ;

PO (k)=-P (k) *(0.5/tau +bxcoth (b*Tb));
end
P2=(WxP1') ';VO=WxPO;VO0 (1)=VO0 (1) *sqrt (2);
VO (N1)=VO0 (N1) *sqrt (2) ; VO=VO0./ (x+r0) ;
P2(:,1)=P2(:,1)*sqgrt(2);P2(:,N1)=P2(:,N1) xsqrt (2);
P2=P2./ (ones (MK, 1) * (x+r0) ') ;
X4=ones (MK, 1) * (x+r0) '; Y4=t 'xones (1,N1);
figure, surfc(X4,Y4,P2)
colorbar
xlabel('r'), ylabel('t'), zlabel('u')
title(sprintf ('Surf.,tNr.=%4.1£f',MK))
A2=a2xWxdiag (1k0) . "2xW';
A=[21,El;-A2/tau,-El/tau];MI2=zeros (N1,1);
y01l=[yl; zeros (N1,1) ];uTl=expm(A*Tb) xy01;
y02=[zeros (N1,1) ;ones (N1,1)];uT2=expm (AxTb) xy02;
MI2(1:N1,1)=(zeros(1:N1,1)-uT1(1:N1,1))./uT2(1:N1,1);
y0=[y1l;MI2]; y0T=expm (A*xTb) xy0;y0T (1)=y0T (1) *sqgrt (2);
yOT (N1) =yO0T (N1) *sqgrt (2) ;
MI2(1)=MI2 (1) *sqrt(2);MI2(N1)=MI2(N1)*sqrt(2);
SM=sum (MI2./ (x+r0)) /N1;MSM=max (MI2./ (x+r0));
figure
plot (x+r0,MI2./ (x+r0), ...
'ko',x+r0,y0T (1:N1) ./ (x+x0), "'k*',x+r0,VO0, 'rx")
title(sprintf ('V(0)superp. meth,U(t_f£f),V(0)analyt.,Av.V(0)=.
%$8.4f, max val. = %8.4f ',6KSM,MSM))
legend('V(0) superp.', 'U(t_{final})', 'V(0) analytical')
xlabel('r'), ylabel('u')
options=odeset ('RelTol', 1.0e-7);
[T1l,Y¥1]=0del5s (@SIST, [0 Tb],y0,options, A);
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49 Y1(:,1)=Y1(:,1)*sqrt(2); ¥Y1(:,N1)=Y1(:,N1)=*sqrt(2);

5o Y1(:,N1+1)=Y1(:,N1+1)*sqrt(2);Y1(:,NN)=Y1(:,NN)*sqrt(2);

s1. Mv=[ (x+r0); (x+r0)]';K=length(T1l);Y¥1l=Y1l./ (ones (K, 1) *Mv) ;

52 MSMl=min (Y1 (1,N1+1:NN));

53 figure,plot (x+r0,Y1l(end,1:N1)', 'ko")

54 grid on

550 title(sprintf('Sol.of superpos. on r by t=Tb=...

s %4.2f,t_r =%4.2f ',Tb,tau))

57 xlabel('r'), ylabel('u')

ss figure,plot (T1(:) ,max(¥Y1l(:,1:N1)"'), "'kx")

59 title(sprintf('Sol.of superpos. on t by max(U(x,t)),max V(0)=.
o0 %8.6f,8t_r$ = %4.2f ',MSM1l,tau))

61 xlabel('t'), ylabel('u')

2 Xll=ones (K,1l)*(x+r0)';Y1l1l=Tlxones(1l,N1);

63 figure, surfc(X11l,Y¥11,Y1(:,1:N1))

¢ colorbar

s xlabel('r'), ylabel('t'), zlabel('u')

66 title(sprintf('Surf.,tNr.=%4.1f',K))

7 function y=f1l(x,sigl,sig2,h,L)

6s y=S$tanh (x*L) * (siglxsig2+h”2+ (sinh (xxh)) "2) $/h/sinh (xxh) -.
0 (sig2+sigl);

70 function y=msak (x,sigl,sig2,L)

71 y= cot (xxL)—(x— sigl*sig2/x)/(sigl+sig2);

72 function y=msakl (x,sigl,sig2,h, L)

73 y= cot (x*L) - (sin(xxh) /h -hxsiglxsig2/sin(x+h))/ (sig2+sigl);
74 function F=SIST(t,y,A3)

75 F=Axy;

4.5.5 MATLAB programm for matrix of derivatives

Here is the m.file HipParCh and cheb for matrix of derivatives

1 %$$ODE rU_tt +U_t=A U,U(0,t)=1,U(1,t)=U(x,0)=U_t(x,0)=0

2 %S$transf.U=Ul1l +1-x%,U1(0,t)=U1(1,t)=0,Ul(x,0)=x-1,Ul_t(x,0)=1
3 function HipParCh (N)

4 Tb=0.2;r=0.1;

5 L=1;N1=N+1;N2=N-1; NN=N2xN2; A=zeros (NN, NN) ; NP=£fix (N/2) ;

¢ [D1l,x1]=cheb(N); % Chebihev grid points x1 and matrix D1
;7 D=D1%2/L;

s x=0.5%Lx (x1+1);

9 x=x(2:N);

10 yl=—(1-x),;y2=zeros(N2,1);y0=[yl;y2];

11 B=D"2;A2=eye (N2,N2) ;Al=zeros (N2,N2);

2 A3=B(2:N,2:N)/r;Ad4=-1/rxeye (N2,N2);

13 A=[Al A2;A3 A4];

14 options=odeset ('RelTol', 1.0e-7);
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15 [T,Y¥]=odel5s (@SIST, [0 Tb],y0,options,A);
16 Yl=Y(end,1:N2) '-yl;
17 figure
13 plot([0;x;L], [1;Y¥1;0], 'ko")
19 grid on
20 title(sprintf('Matrix of derivat.,N=%3.0£f, time = .
21 %8.6f Y(Tb,N/2))=%8.6f ',N,T(end),Y1(NP)))
» xlabel('x'), ylabel('u')
13 figure
2% plot(T,Y(:,NP)-yl(NP), "'kx")
25 xlabel('t'), ylabel('u')
% hold off
27 function F=SIST(t,y,A)\\
8 F=Axy;
29 function [D,x] = cheb(N) % in segment [-1,1]
30 if N==0, D=0; x=1; return, end
31 x=—cos (pix (0:N)/N)';
2 c=[2; ones(N-1,1);2].%(-1).8$"{(0:N)}$';
3 X = repmat (x,1,N+1);
3 dX = X-X';
—(c*x(1./c) ') ./ (dX+ (eye (N+1)));
-D+ diag(sum(D'));

D
36 D

4.6 The solving the direct problem with the periodical BC

We consider the initial boundary value problem with periodical BCs

82 oT (x 70T (x
o) 1 1) — 9 (k2 x € (0,L),1 € (0,17),
T(0,1) = T(L,r), 2800 — IO 4 ¢ (0,1), (4.17)

T(x,0) = To(x), 20 — vpy(x),x € (0,L).

Using uniform grid x; = jh,j = 0,N,Nh=1L, (N is even number) we
obtain the system of ODEs (4.6) where A is the 3-diagonal circulant
matrix of N order in the form A = hlz[Z, —1,0,---,0,—1].

From the corresponding spectral problem of the matrix A follows that
(see chapterl)

My = :—z(sin(kﬂ/N)z, are the eigenvalues and w’j‘- = \/%exp(Zm'kj/N),

*,J
are the elements of the biorthonormed complex eigenvectors

wk wk, where (W, w) = ):N 1W W :5;{7,",

The eigenvalues L, are symmetrlcal as regards k =N /2 (with the max-

wk = \/%exp(—%rikj/N),k,j ~T,N
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imal value %) OF Ly /24m = MN/2—msm = 1,N/2.

Using the matrixes W, W, with the eigenvectors wX, w¥ in the matrixes
columns we get AW = WD, WW, = EW =W, A=WDW,,
where the elements of the diagonal matrix D is dy = x,k = 1,N.

For the differential spectral problem follows

hie= (2k /L) wH () = |/ Fexp(2nik/ L),
W () =/ Fexp(=2mikr/L), (wh w2, = i w2 () = &

k,m = —oo, +oo,

The solution of (4.17) with the Fourier method can be obtained in
following form:
To(x) = L7 oo Pk (O)WH(x), pr(0) = (WL, To),
Vo(x) = X prOWA(x), pi(0) = (wh, Vo), T (x,1) = T prlt)w(x),
where py(t) is the solution of 4.9) by k # 0.
For k = 0 we obtain py(t) = exp(—0.5¢/7)[t(pr(0) +0.5p,(0)/7) +
pr(0)].

The solution we can also obtained in real form:
T(x,t) = Yo, (bi(t) cos 255 ¢ (¢) sin 22k 4 20l

(x) = X2, (b (0) cos 2255 4 ¢, (0) sin 2”’Of) + 20,
bi(0) = 2 fif To(&) cos ZHEdE ¢ (0) = 2 [ To (&) sin 2,

(x) = X, (be(0) cos 27;’“ +¢4(0) sin 22kx) 4 o(0),
bi(0) = 3 J5 Vo(&) cos TS dE ¢ (0) = 2 [ Vo(§) sin TS dE,
where by (1), ci(t) are the corresponding solutions of (4.9) with initial
conditions by (0), b (0).

We can consider the analytical solutions of (4.6) using the spec-
tral representation of matrix A = WDW, . From transformation P =
WU (U = WP) follows the seperate system of ODEs (4.8), where the
column-vectors are of N order.

The solution of the system (4.8) is in the form (4.9), where
k=1,N,d; = . For k = N the solution is

pr(r) = exp(—0.51/7)[t(pn(0) +0.5p(0)/7) + p (0)].

If d; = A4 then we can obtain the solution of FDSES in following way:
Ddy = A for k = 1,N,, where N, = N /2.

2)dk ;LN k for k = Nz, 1 dN =0.
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We can obtain the solution of the discrete problem in real form
() = L2 (Bi(r) cos T + (o) sin Fpd) +
where by (1), ci(t) are the corresponding solutlons of (4.9) by

bk(0)=1%2,- 1 To(x;) cos 22 i (0 ):]%ZN Vo(x;) cos 22K
c(0) = 1%/2]' TO(XJ)Ska] (0 ):NZ Vo(xj)sm%

The numerical experiment with L = 1,7, = 0.4,7 = 0.5;0.1 and
, Ty = sin'®(7x), Vo = 0 is produced by MATLAB 7.4 solver “ode15s”

We have following MATLAB m.file hipSiltPer :

1 %ODEs tauxU_tt+U_t=AU with periodic cond.
2 %t=Tb,u_t=0=sin(p x) "100

3 function hipSiltPer (N)

4+ N1=N+1; Tb=0.4;L=1;x=linspace(0,L,N1)';h=L/N;

5 NT=[1:N]/L;N2=N-1;NN=2xN; NH=N/2;tau=0.1;

¢ 1lkO0=(2%pi/Lx(1:N)/L')."2; % dif. eig.

7 1lk2=4/h" 2% (sin(pi*h*NT))."2; %FDS with 0(h"2)

s 1lk4=4/h"2* ((sin (pi*h*NT)) . 2+1/3* (sin(pi*h*NT))."4);%0(h"4)
9 1lk6=4/h"2x ((sin(pi*h*NT)) . "2+1/3% (sin (pi*h*NT)) . 4+

10 8/45% (sin (pi*h*NT))."6);%0(h"6)

11 1k8=4/h"2x% ((sin (pi*h*NT)) . "2+1/3* (sin (pi*h*NT)) . 4+

12 8/45% (sin (pi*h*NT)) . " 6+4/35* (sin (pi+*h*NT))."8);%0(h"8)

13 W=exp (2*pixh*xix[1:N]'*[1:N]/L);x=x(2:N1);yl=sin(pi*x)."100;
14 y2=zeros(N,1);Zl=zeros (N,N) ;El=eye (N,N);

15 lk=zeros(N,1);

16 1k (1:NH)=1kO0 (1:NH);

17 1k (NH:N2)=1kO(NH:-1:1); $FDSES

18 A2=—hxWxdiag(lk) *conj (W) ;

19 AT=zeros (NN,NN) ;yll=zeros (N2,1);

0 yO=[yl;y2];AT=[Z1,El;A2/tau,-El/tau];

21 options=odeset ('RelTol', 1.0e-7);

2 [T,Y¥]=odel5s (@SIST, [0, Tb],y0,options, AT);

23 im=max (imag(Y(end, :)));

2 figure,plot (x,real(Y(end,1:N) '), 'ko'), MA-max(abs(Y(end,1:N)))
25 grid on

%6 title(sprintf('Sol. by Tb, maxim=%8.6f, .

27 time = %8.6f Max=%9.7f ',im,T(end), MA))

3 xlabel('\itx'), ylabel('\itu')

29 figure, plot(T(:),max(real(Y(:,1:N)"')))

3 %hold on, plot(T(:),max(real(Y(:,N+1:NN)"')))

31 grid on

2 title(sprintf('Time,N=%3.0f, time = %8.6f ',N,T(end)))

33 xlabel ('\itt'), ylabel('\itu')

4 K=length(T);

335 Xl=ones (K, 1) *x';Y1l=Txones (1,N);% per.

36 figure, surfc(X1l,Yl,real(Y¥(:,1:N)))% per.
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37 colorbar

33 xlabel('x'), ylabel('t'), zlabel('u')

3 title(sprintf ('Surface, imag=%8.6f,Laika sl.sk.=%3.06£f, . . .
40 Max=%8.6f',im,K,MA))

41 function F=SIST (t,y, AT)

42 F=AT*y;

We have following maximal values of solution max |U (t7)| by N =
80 depending on the order of approximation:
1) T=0.5—0.35860(h?),0.36920(h*),0.36890(h%),0.36880(h?),
0.3688FDSES (FDSES : 0.3528N = 40,0.3521N = 20,
FDSO(h?) : 0.3358 N=40, 0.4661 N=20);
2) T =0.1-0.13190(h?),0.13540(h*),0.13570(h%),0.13570(h®),
0.1357FDSES (FDSES : 0.1314N = 40,0.1322N = 20,
FDSO(h?) : 0.1199 N=40, 0.1080 N=20).

In the Figs. 4.23-4.28 we can see the FDSES solutions by N = 80.

Surface,imag=0.000000, Laika sl.sk.=474.000000, Max=0.368793 Time,N= 80, time = 0.400000
1

0.9
0.8
0.7 08
0.6

05

04 06
03

02

0.1

0 005 01 015 02 025 03 035 04
t

Fig. 4.23 FDSES solution- surface by 7 = Fig. 4.24 FDSES solution depending on ¢ by
0.5,N =80 T=0.5,N=80
Sol. by Tb, maxim=0.000000,time = 0.400000 Max=0.3687929 Surface,imag=0.000000, Laika sl.sk.=1016.000000, Max=0.135679
04
09
0.35
1. 08
0.3
07
0.25 06
s 02 : 05
’ 04
0.15
03
0.1 b S
S 7 . 02
00 Y L 01
0 I 0
0 0.2 0.4 0.6 0.8 1 X
x

Fig. 4.25 FDSES solution by 7 = 0.5,¢y = Fig. 4.26 FDSES solution- surface by 7 =
0.4,N =80 0.1,N =80
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Sol. by Tb, maxim=0.000000,time = 0.400000 Max=0.1356791 Time,N= 80, time = 0.400000
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Fig. 4.27 FDSES solution by 7 = 0.1,t; = Fig. 4.28 FDSES solution depending on ¢ by
0.4,N =80 7=0.1,N=280

In Figs. 4.29, 4.30 we can see the FDSES and FDS O(4?) solutions
by ;= 0.4,7=0.5,N = 20.

Sol. by Tb, maxim=0.000000,time = 0.400000 Max=0.3520586 Sol. by Tb, maxim=0.000000fime = 0.400000 Max=0.4661248
06

Fig. 4.29 FDSES solution by 7 = 0.5,¢y = Fig. 4.30 FDS O(h?) solution by =05t =
0.4,N =20 0.4,N =20

We can see, that FDS methods give the solutions with oscillations.
FDSES method is without oscilations and the solution is positive even
if N =20.

By replacing the Matlab operator
[T,Y] = odel5s(@SIST, [0,TDh],y0,0ptions,AT ); with the operators
[T1,Y1] = odel5s(@SIST, [0,TD],y0,0ptions,AT );

[T,Y] = odel5s(@SIST,[TD,0],Y1(end,:),options,AT);

we can solve the time inverse (retrospective) problem.

An example for 7 = 0.5,y = 0.4,N = 80 the maximal values of
FDSES solution max |U(tf)| for t = 0 is 0.999989 (exact value is

sin!®(0.57) = 1).
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4.7 Conclusions

We consider the homogenous 1-D hyperbolic heat conduction prob-
lem in plate and in the sphere with holes (0 < ry < r < R) by radial
symmetry. Using the tranformation the problem in the sphere with
holes is reduced to the following hyperbolic heat conduction problem
in the plate.

Using the finite differences of second order approximation for par-
tial derivatives of second order respect to x we obtain the initial value
problem for system of ordinary differential equations (ODEs) of sec-
ond order in the matrix form with the standard 3-diagonal matrix A.
For the difference sheme with exact spectrum (FDSES) the matrix A
is represented in the form A = WDW, where W = W~ ! is the symmet-

rical orthogonal matrix with elements \/% sin %, i,j=1,N—1. We
are considered the analytical solutions using the spectral representa-
tion of matrix A in the form A = WDW.

For the approximations the derivatives with matrix of derivatives we
can consider also nonuniform grid with the grid points of the roots of
the Chebyshev . The numerical experiment is produced by MATLAB

solver ”odel5s” .



Chapter 5

3-D HHC equation: A. Buikis, H. Kalis, 1.
Kangro, 2015 [81]

In this chapter we consider the following 3-D hyperbolic heat conduc-
tion problem:

(1 Ty, , T (x,
T, (axt2y“)+ cp (xizzt):é?x(k (gyzt))+

dT (x.y, dT (x.y,
2 (ky 28220y 4 9 (e, L) 0T (3, 3,2,) + £ (4,3, 2,8),
€ (0,L,),y € (0,Ly),z€ (0,L;),t € (0,ty),
aT(0 7yzt) &T(x,O,zJ) 9T (xy,0,) 0
< dy - dz -
( Myzt) ‘I‘axT(Lx,y,Z t) 0
ky (“"“ + oy T (x,Ly,z,t) =0,
Z (xy7LZ7t) +aZT(x7y7LZ7t) - 07

T (x,y,2,0
T(X7y>Z70) - TO(xayvz)v % = VO(X7Y7Z)7

“ (5.1)
where p, c is the density and the heat capacity of the steel, k., ky, k, are
the constant heat conductivity coefficients, o, o, ¢, are the constant
heat transfer coefficients, 7/ is the final time, 7, is the relaxation time,
To(x,y,z) is the given initial temperature, Jp > 0 is the given constant
. For the inverse problem the function Vj(x,y,z) is unknown and then
we can used the aditional condition T'(x,y,z,t7) = Tr(x,y,z), where Ty
is given final temperature.
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5.1 CAM with parabolic integral splines for the Solutions 3-D
problem

Using conservation averaged method (CAM) respect to z with

quadratic polynomial [9]

T.(xy,0) = £ Jo T (%3, 2,1)dz,

T (x,y,z,t) = T,(x,y,t) +m;(x,y,t)(z—0.5L;)+

e.(x,y,1)((z— 0.5L;)* — L?/12), with the unknown functions m_, e,

we can determined this functions from boundary conditions (5.1) in

following form:

m, =e,L, = —%E(x,y,t). Then

2k, + L o, — azzz/ L,
k,+La;/3

T(x,y,z,t) = 0.5T;(x,y,1)

and the initial-boundary value problem (5.1) is in following form

(. PT(xy1) Fep IT.(xyt) _ 9 (kxcﬁz(x,y,t))Jr

* 852 ot~ dx dx
i (k TZ (x7y7t)
dy

Y dy )_(7/Z+y0)]2(x7yat>+fz(x7y7t)7
X € (Ova>7y € (OvLy)vt € (Ovtf)7
aTZ(Ovyvt) P aTZ’,(xvovt) —_ O
< aax - dy -
T (Lyx,y,
ka(Tyt) + axE(L)hyat) = 07
kP g T (x, Ly, 1) =0,

dT;(x,y,0
| 72(6,,0) = Ty 0(x,), ZE20) —y7 i (x, y),

5.2)

ok,
szz+OtZL§/3 ’

L L
fz(xayat) = LLZfo”f(x,y,Z,t)dZ, E,O(xay) = lefo TO(x7y7Z)dZ7

L,
VZ,O(xay) = L% fo V()(X,y,Z)dZ-
Using averaged method respect to y
Ly
TZ,y(xJ) = [% f()) TZ(x7y7t)dy7
TZ(x7y7t) = TZ,y<x7t) + my(x7t>(y o OSL}’) + ey(xat)(()’ - O'SLy)2 -
12/12)
with the unknown functions my, e,, we can determined this functions
from boundary conditions (5.2) in following form:

0.5¢
_—ky+LonVy/3 T, y(x,t). Then

where ¥, =

my = eyLy, =
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2ky + Lyot, — a4y /Ly

T.(x,y.1) = 0.5T.y(x,1)

ky+Lyoy,/3
and the initial-boundary value problem (5.2) is in following form
9’1, T, (x,t
P  cp Tl _ 5, Tl

%ﬁp+m> ;2+ﬁxxﬂxewL)rew@L
25(04) >()+%Eggﬁ 0,

bx7 _Ok dx
x,0
Ty(x,0) = T,y 0(x), 2230 — v (),

(5.3)

ok 1 rL
where Yy #%Lz/yfzy(x Vs ) L_Vfoyfz(x7y7t)dya

L
szO( ) i, fo ZO(X y)dy, V,y, ( ) lfoyVOZ()C y)dy.
Itis poss1ble make the averaging also respect tox
T.,y,X( ) L. fo zy(x t>dx
Ty(x,1) = Ty a(t) +mu(£) (x — 0.5Lx) +ex(t) ((x — 0.5Ly)> — L3 /12),
with the unknown functions m,,e,. We can determine this functions

from BCs (5.3) in following form:

— — 0.5¢
ny = €xLx = —mTZ?%x(l’). Then

2k + L0ty — O4x? /Ly
ky+ Lyt /3

E7y(x7 t) = O'STZJ:X(I)

and the initial-boundary value problem (5.3) is in following form

aZTZ X z A
{ T* aﬁ; ( ) + cp ay[ + YTZ%X(I) = fZ,}%x(t)?t € (0’tf)7 (54)

0T, (0
T;yx(0) = T;yx0, Zg}( )= Vey.x,05

where 7_ pot%tht+tY %= Mﬁ(#%afayw(t) = Lixféxﬁ7y<xvt)dx

Ly
Loyx0=1; fo T y0(x)dx, Vo yx0 = LLX Jo* Vozy(x)dx.
Therefore we have from (5.4) the 1nitial problem for ODEs of the
second order. The solution of this problem is

{ T, yx(t) = exp(—0.5t/7)(Csinh(xt) + Bcosh(xt))+ 5.5)

L [exp(—0.51(t — &)) sinh(x(r — £))G(E)dE,

where T="1./(cp), kK = \/()-25/‘L'2 —%/T, B=T,yx0,
C_ (V>y>XO+ 2TT7y7-x0)
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Yo =7/(cP), Y=Y+ %+ %+ W, G(t) = foyx(t)/(cp). If 4y > 1,
then the hyperbolic functions to need replaced with the trigonometri-

cal and the parameter k with \/7./7 —0.25/12.

Using averaged value with constant function[9] we have the un-
known functions my = 0,¢e; = 0,k = (z,y,x) and the equations (5.2-
5.4) remain one’s own form, where ¥, = g—]’z,k = (z,,%).

5.2 Mathematical model of the modified 1-D problem

Similarly (5.3) we consider the following modified 1-D hyperbolic
heat conduction problem in the plate:
92T (x, oT (x, oT
oot 4 TR = G (kT — 1T (1) + (),
x € (0,L),r € (0,tf), (5.6)
MO _ y7(0,1) = 0,2HED 4 5y T(L,r) = 0,0 € (0,87),

T(x,0)=T; (L% v< ),x € (0,L),

where L= L,k =k /(cp), T is the relaxation time (7 < 1), Ty(x) is the
given initial temperature, 61,02 = 0 /ky, Y = Y/(cP), Y=Y+ %+
are the constant coefficients (for boundary condition with symmetry
o1 =0), f(x,1) is the source function.
For the inverse problem the function Vj(x) is unknown and then we
can used the aditional condition T (x,ty) = Ty(x) , where Ty is given
final temperature.
The following 1-D modified hyperbolic heat conduction problem in
the sphere with holes (0 < ry < r < R) by radial symmetry is:
) _
o206 1 I _ RPTE) _y7(1) + £ (),
r € (ro,R),t € (0,15),
IMrot) — 0, 2TRA 4 0y T(R,1) = 0,1 € (0,1),
T(0) = Tor). 25 — Vo(r). € ()

5.7

where r is the polar coordinate, R, rg are the radius of the sphere and
hole, o = o, /k,,k =k, /(cp), ky, ot are the corresponding heat con-
ducting parameters.

For the inverse problem the function Vy(r) is unknown and then we
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can used the aditional condition T'(r,t7) = T¢(r) , where Ty is given
temperature.
Using the tranformation V = Tr,x = r — rp we can the problem (5.7)
reduced to the hyperbolic heat conduction problem in the plate:
oPirt) 4 ) — 9 (RO — gV (1) + f e+ r0.0)
x € (0,L),t € (0,tf),

NOD _ 6,v(0,1) = O,‘Wa(—ingc(f)zV(L,t) =0,t € (0,¢/),
V(x,0) = To(x+ro)(x+ro), % =Wo(x+ro)(x+rp),x € (0,L)
(5.8)
where 0 = %,02 = —%>0,L=R—r),T(rt)= —V(;Cj[:g”)

In the case of full sphere (r9 — 0) the first boundary condition is

V(0,t) =0o0r oy = and T(0,t) = %.

We consider uniform grid in the space x; = jh, j = O,N,Nh=1L.
Using the finite differences of second order approximation for partial
derivatives of second order respect to x we obtain from (5.6) the initial
value problem for system of ODEs of second order in the following

matrix form

tU (1) + U (1) + kAU (1) + %U (t) = F (1), (5.9
U(0) =Uo,U(0) =W, '
where A is the 3-diagonal matrix of N+ 1 order in the form

24+ho1 -2 0 ... 0 O 0

-1 2 -1..0 0 0

0 0O 0..-12 -1
0 0..0 —22+4+ho,

)

U(t),U(t),U(t),Vo,Uy, F(t) are the column-vectors of N + 1 order
with elements

. dT (x;, .. 92T (xj,
uj(t) ~ T(x;,0)), i(t) ~ 2298 iy ~ LG 0) = Vo(x))

A at?
uj(0) = Uo(x)), fi(t) = f(x;,1),j=O,N.
The corresponding spectral problems are solved in chapter 2.




198 5 3-D HHC equation: A. Buikis, H. Kalis, I. Kangro, 2015 [81]

5.3 The solution of the discrete problem

We can consider the analytical solutions of (5.9) using the spec-
tral representation of matrix A = WDW . From transformation V =
WTU(U = WV) follows the seperate system of ODEs

{ V() +V(t)+kDV () + %V (t) = G(t),

V(0)=WTUy,V(0)=WTV,, (5.10)

where

v(t),v(t),¥(t),v(0),v(0),G(t) = WT F(¢) are the column-vectors of M
order with elements vy (), v (¢), Vi(2), v (0),vi(0), gx (1 )k = 1,M,M =
N+1.

The solution of this system is the function

K
cosh(kit)vi(0)) + 7 J exp(— 52 ) sinh(ic(r — &))ge(&)dE

(5.11)

where dy = 8 + . /k, 8 = Wi, K = 1/0.25/72 — kdy /7. If 4kd)T > 1,

then the hyperbolic functions are replaced with the trigonometrical

and the parameter kj, with \/kdy /7 —0.25/72.

If k. = 0, then v (¢) = exp(—0.5¢/7) [t (vx(0) +0.5v,(0) /7)+

(O] + ¢ Jyexp(~122) (1 — E)gul(§)dE.

Note: in (5.10) the first u; (0), fi(¢),v1(0) and last

up(0), fur(t),var(0) components of vectors Uy, F(t),Vp are divided

with v/2, but the components u; (¢),up(t) of the solution vector U (¢)

need to multiply with v/2.

{ ve(t) = exp(—0.5¢/7) (S (3 (0) 4 0.5v,(0) /7)+

5.4 The methods for solving the inverse problem

For the inverse problem the vector Vj in (5.9) is unknown and we have
additional condition U (tf) = uy, where uy is the vectors-column with
elements uysy = Tr(xy),k = 1,M.

The analytical solutions of this problem can be obtain from (5.11) re-
placed the second initial condition V (0) = W'V, with V (t5) = W uy.
Then the solution is following
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vi(t) = exp(— o5t/r)[sj§§,§§f>)(exp(o.Szf/r)vk(tf)—
v (0)c osh(ka =y exp(f,v)sinh(wf—é))gk<é)dé>+
o foex <zf>smh< (6 E))ga (E)IE + cosh(t e 0)].

(5.12)
where vi(tr) are the components of vector V(¢7) (the Note for the
vectors Vo, uy, F is valid).

From (5.11) follows that the second conditions is in following form

Vk(()) = mh'(c—ikt)[exp(O.Stf/r)vk(tf) — v (0) COSh(K‘ktf)—
Ly exp(5) sinh(ic(ty — €))gi(€)dE] —0.5v(0) /7,
Vo = WV(O) If vk(tf) ( ) 0, then

91(0) = — oty vk(0) - “05(0)/7,

5.5 Some examples and numerical results

The numerical results for the problem (5.6, 5.7) (o] = 0) are obtained
for intensive Carbon steel quenching models with k = 0.000017713,
y=0:10:107 (k= f—,;,kx = 60.5-% - the heat conductivity, p =
78702—5& - the density of the steel, c = 4341<ch - the heat capacity), o, =
30 - the heat transfer coefficient) and L = 1,7 = 0.1;0.5,Tp(x) =
600,17 = 1;3;5,T¢(x) = 0,N = 20. We have following results for V;
(see the Table 5.1).
In the last row (*) of this table the obtaining profile of the temperature
is non monotonic,but for 7 = 0.5,y = 5 we have the oscilations and
the negative temperature (the parameter?y is too big) (see the Figs. 5.1,
5.2)
For 7 = 0.5,y =10 we have V, = —1202,98 (Figs. 5.3, 5.4).
For 7 = 0.1 we have correspondly V; = —6000,26 (Figs. 5.5, 5.6).
The numerical results for the problem (5.5) are obtained by the

r—ro

above-mentioned parameters with R = 8,ry = 1, Ty (r) = 600; 600 Rorg
tr=0.5;5,T¢(r) =0,N =20,y = 10.
In Figs. 5.7, 5.8 are represented the results of the calculation by
7=0.5,7=0.1,Tp(r) = 600,17 = 5.

In the Figs. 5.9, 5.10 are presented the results of the calculation
by 1=0.5,Ty(r) = 600;:;% ,ro = 1,7 = 5, where the averaged value
Vo = —600, 1.
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Table 5.1 The values of V) depending on 7,7
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T % Vo T v Vo
05| 0 [—1202.98/0.1] 0 |—6000.27
10> |—1202.96 102 |—6000.25
10% |—1199.88 103 |—6000.10
10* |—-1198.30 104 |-5998.52
10° |—1182.24 10° |—5982.67
106 | —987.51 106 |—5819.33
2%10%| —684.97 107 |—2326.18
% [3.10° | —=798.29 | % |11.10°| 272.90
DN, i

Fig. 5.1 Solution max(U (x,t)) depending on
tby t=0.1,t;=1,y=11.10°

Solutions on t by max, (U(x1),V(0)=~1200.107147,t = 0.50

500 E
5
400 3

1
300 %

200

100

Fig. 5.3 Solution max(U (x,t)) depending on
tby T=0.5,,=57y=10

3 4 5

t

Fig. 5.2 Solution max(U (x,t)) depending on
tby T=0.5,t;=5,7=3.10°

Surf. tNr.=136.0,V01=—

1200.16098,02=-1200.16148

Fig. 5.4 Solution U(x,r) by © = 05,1 =
5,y=10

In the Figs. 5.11, 5.12 are presented the results of the calculation by

r—rg
R—ry’

T=0.1,Ty(r) = 600
Vo = —3000, 5.

ro = 1,1y = 0.5, where the averaging value
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Sol.of superpos. on t by max (U(x,4).V(0)=272.856732.tau = 0.10

som\%

500 e

**
*Jk
400 e
*
*
*
%
300 *e
**

200

100

Fig. 5.5 Solution max(U (x,t)) depending on
tbyt=0.1,y=10

V(0)superp. meth,U(t),V(0)analyt. Av.val.V(0)=~1200.2041,max val. = ~1199.3507

-200

400

> -600
-800
-1000

-1200¢ e e e e e © o o ©

Fig. 5.7 Functions Vp, Uy depending on r by
7=0.5,Tp(r) = 600

V(0)superp. meth,U(t),V(0)analyt, Av.val.V(0)=-600.1049,max val. = -0.4843

02 * * * * * * * * *
®
200 ®
O V(0)superp.
400 @ * Ui
@ *  V(0) analytical
> 600 ®
®
-800 °
-1000 ©
®
-1200
] 2 3 4 5 6 7 8
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Surf. tNr.=206.0,V01=-6000.05320,V02=-6000.05319
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Fig. 5.6 Solution U(x,#) by T=0.1,y=10
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Fig. 5.10 Solution depending on #,r by 7 =
0.5,To(r) = 6001';'}[’)

The numerical results are obtaining with MATLAB using
the following m. file ”’hipSiltA(20)’ and “ipas3v”’(see chapter 1):



202

5 3-D HHC equation: A. Buikis, H. Kalis, I. Kangro, 2015 [81]
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$tauxU_{tt}+U_t+a2 AU=0 MATLAB solvers and analytical
%$t=Tb,U_{t=0}=600,U_{t (t=0)} =v_0=?,

$ U_t=Tb =0, U_{x(x=0)}=0, U _{x(x=L)}+ alfa U_{x=L}=0
function hipSiltA (N)

N1=N+1; Tb=3;L=1;x=linspace(0,L,N1)';h=L/N;
N2=N-1;NT=[1:N1];NN=2xN1l; tau=0.5;
k1=60.5;cl1=434;r1=7870;a2=kl/ (cl*rl)

%$Carbon steel

a22=1/(clxrl);alfax=30; alfa=alfax/cl;gamma=3000000;
gl=a22x (alfax/L+gamma) ; \% aver. with constant
MK=50;bl=0.5/tau*sqrt (1-4xtau*gl) ; u0=600;

v0=-u0* (blxcoth (Tb*bl)+0.5/tau) ; t=linspace (0, Tb, MK) ;
u=exp (-0.5%t/tau) . * (u0xcosh (t*xbl) +(v0/bl+.

0.5%u0/ (tauxbl) ) *sinh (t*bl));

figure,plot(t,u, 'kx")

grid on

title(sprintf ('Aver.const.u(t) on t by t=%4.2f,tau =%4.2f, .
v0=%8.4f ',Tb,tau,v0))

xlabel('t'), ylabel('u')

sigl=0; sig2=alfa; [1kO0, 1k,W]=ipas3v (N, sigl, sig2,L);
gl=a22x (alfax/ (L+$L"2$*xalfa/3)+gamma); %aver with kvadr. polin
bl=0.5/tauxsqrt (1-4xtau*gl) ; u0=600;

v0=-ul0* (bl*coth (Tbxbl)+0.5/tau);

u=exp (-0.5+t/tau) . * (ub*xcosh (t*xbl)+(v0/bl+.

0.5%u0/ (tauxbl) ) *sinh (t*bl));

Vx=v0/ (2+2/3*alfaxL) * (2+Lxalfa-alfa*x."2/L);
figure,plot (x,Vx, 'kx'")

title(sprintf ('Aver.pol.V0(x)on x by t=%4.2f,tau =%4.2f, .
v0=%8.4f ',Tb,tau,v0))

figure,plot(t,u, 'kx"')

title(sprintf('Aver.pol.u(t) on t by t=%4.2f,tau =%4.2f, .
v0=%8.4f ',Tb,tau,v0))

xlabel('t'), ylabel('u')

A2= a2xWxdiag(lk)*W';

y1=600%ones (N1,1);yl1(1)=y1(1l)/sqrt(2);yl (N1)=yl(N1l)/sqrt(2);
P=W'xyl;Pl=zeros (MK,N1l) ;PO=zeros(N1,1);

for k=1:N1
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b=sqrt (0.25/tau”2 -a22x (1k (k) /tau—gamma/tau));
P1(:,k)=P(k)*exp(-0.5%t'/tau) .*...
(cosh(bxt')—sinh (b*t') *coth (b*Tb));

PO (k)=-P (k) *(0.5/tau +bxcoth (b*Tb));
end
P2=(WxP1') ';VO=WxPO;VO0 (1)=VO0 (1) *sqrt (2);
VO (N1)=VO (N1) »sqgrt (2) ;
P2(:,1)=P2(:,1)*sqgrt(2);P2(:,N1)=P2(:,N1) xsqrt (2);
u2=P2 (MK, 1:N1) ; figure,plot (x,u2’', '*'")
title(sprintf('Sol.on x by t=Tb=\%4.2f,tau = \%4.2f ',6Tb,tau))
xlabel('x'"'), ylabel('u')
X4=ones (MK, 1) *x';Y4=t'*ones(1,N1);
figure, surfc(X4,Y4,P2)
colorbar
xlabel('r'), ylabel('t'), zlabel('u')
title(sprintf('Surf.,tNr.=\%4.1f' 6 MK))
figure, plot(x,V0, 'x'")
title (' Initial cond.VO0')
Zl=zeros (N1,N1) ;El=eye(N1,N1);
A=zeros (NN, NN) ;
y1l=600*ones (N1,1);
y1(1)=y1(1)/sqrt (2);yl (N1) =yl (N1) /sqrt (2);
A=[Z1,El; - (A2+gamma*a22+El) /tau, -El/tau];
y01l=[yl; zeros (N1,1) ];uTl=expm (AxTb) xy01;
uTl (1)=uTl (1) *sqrt (2) ; uT1l (N1) =uT1l (N1) *sqrt (2);
y02=[zeros (N1,1) ;ones (N1,1)];y02 (N1+1)=y02 (N1+1l) /sqrt(2);
y02 (NN) =y02 (NN) /sqgrt (2) ; uT2=expm (AxTb) xy02;
uT2 (1)=uT2 (1) xsqrt (2) ; uT2 (N1) =uT2 (N1) *sqrt (2) ;
MI2=(zeros (1:N1,1)-uTl1(1:N1))./uT2(1:N1);
y1(1)=yl(1l)*sqgrt(2),;yl (N1)=yl(N1l)=*sqrt(2);
y0=[y1l;MI2]; SM=sum(MI2) /N1;
figure,plot (x,MI2, 'ko")
title(sprintf ('V(0) depending on x by t=0,Av.val.=...
%$8.4f,tau = %4.2f ',SM,tau))
xlabel('x'), ylabel('u')
options=odeset ('RelTol', 1.0e-7);
[T1,Y1]=0del5s (@SIST, [0 Tb],y0,options,A);
ul=Y1l (end, 1:N1);ul (1)=ul (1) *sgrt (2);ul (N1)=ul (N1) *sqgrt (2);
figure,plot (x,ul’', 'ko")
title(sprintf ('Sol.of superpos. on x by t=Tb=%4.2f, .
tau =\%4.2f ',Tb,tau))
xlabel('x'"), ylabel('u')
figure,plot (T1(:),max(Y1(:,1:N1)"'), 'kx")
title(sprintf('Sol.of superpos. on t by $max x$(U(x,t)), .
V(0)=%8.6f,tau = %$4.2f ',6SM,tau))
xlabel('t'), ylabel('u')
K=length(T1);
Xll=ones (K, 1) *x';Y¥11=Tlxones(1,N1);
figure, surfc(X11l,Y11,Y¥Y1(:,1:N1))
colorbar
xlabel('x'), ylabel('t'), zlabel('u')
title(sprintf ('Surf.,tNr.=%4.1f,gamma=%6.4f"',K,gamma))
function F=SIST(t,y,A)
F=Axy;
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5.7 CAM with hyperbolic type integral splines for the solutions
3-D problem in z-direction

Using averaged method with respect to z with hyperbolic trigono-
metric functions
0.5L;sinh(a;(z—0.5L;))

T(x,y,2,1) = To(x,3,8) + m(x,3,1) == 350 5a.L)

cosh(az(z—0.5L;))—Aq,
+ez(x Y )O 125 nh2(0 25a,L;) ’

where TZ()C,y,l) - Lz fO ()C,y,Z,t)dZ,
Aq. — (sinh(0.5a;L;))
Z 0.5a,L;)
We can see that the parameters a,; > 0 tend to zero then the limit is the

integral parabolic spline (A. Buikis [9]):

o (z—0.5L,)?
T(x7y7z7t) —E(x,y,t)—I—mz(x,y,t)(z—O.SLz)—i—ez(x,y,t)( L% -
. .

)
The unknown functions m;(x,y,?),e;(x,y,t), we can determined from
boundary conditions (5.1) in z-direction:
d;m; = k;emmz = pzez,e; = —&: Iz,
where
= /( (OSszz+b)+2k*) *:(ZZ’

dZ = O.SLZaZ coth(0.5a;L;) ,k; = 0.25a;, coth(O.ZSaZLZ),pZ =k /d,
b, — cosh(0.5a;L;)—Ao;,

<77 8sinh?(0.25a,L;)

We can use the optimal parameter a, = 70

Now the initial-boundary value 2-D problem is in the form

N\

02 Vs X,Y, azx77
T, Ta(t)’)_Fp (Y) (k T((;yt))_F

d
= o
2 (ko) y (Bt ) T:(t) ).
x € (0,Ly),y € (0,Ly),t € (0,27),

aTz(O,y,t) aT, (ath) —0, (5.13)

ox y
kxM + axT (L)mya ) = 07
@ﬂﬂﬂ+%1ugﬁ 0,

a )9
\Tz(x,y,O)—TZp(x,y) T(ay ) _VZ,O(xvy)v

where B, = i’%*,fZ(x wi) =4 fy fenz, r)dz,
To(x,y) =1 L[5 Ty(x,y,2 )dZ, Voolxy) = L [5=Vo(x,y,2)dz.
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5.8 The averaged method in y-direction

Using averaged method with respect to y
Ty(x0) = £ L [y Te(x,y.1)dy,
0.5Lysinh(ay(y—0.5Ly))

T (x,y51) = Ty (0, 1) 4 ey (0, 1) == opo 50ty T

cosh(ay(y—0.5Ly))—Ag, _ (sinh(0.5a,Ly))
e:y(x,1)0.125 sinh?(0.25a,Ly) 5 Aoy = 05ayLy) -~

The unknown functions m;y(x,t),e;(x,t), we can determined this
functions from boundary conditions (1.13) in following form:
dymzy = kje;y,mzy = pyezy,ezy = =gy,
where
— 0 /(@ (0.5Lypy+by) +265), a5 = 2.

dy = O.5Lyay coth(0.5ayLy) ,ky = 0. 25ay coth(0.25ayLy), py = k; /d,
b — cosh(0.5ayLy)—Agy

Y7 8sinh?(0.25a,Ly)

We can use the optimal parameter a, = , / %Bzgz.
y

Then the initial-boundary value problem (5.13) is in following form

T*a TZ)(xt) + panggx,t) _ %(kxang)(cx,t))_
(Bzgz‘i'Bygy‘i'YO) Zy(x t)"‘fzy(x t) X e (O LX)vt € (Ovtf)7

9Ty (01) =0,k M*'axsz(Lmt) 0,

ox
BT x,0
E,y(x,o)—727y707 ny(t ) = = V250

(5.14)
2k L
where By = 72, f2,(x,3.1) = £ Jo" fo(x,y0)dy,
L,
Tz,y.,O(x) = L_l» fo} T, o(x,y)dy, Vz,y,0< x) = LL f Voo (x,y)dy.

5.9 The averaged method in x-direction

It is possible rrzake the averaging also respect with x
T.yx(t) = LLXIO * T, y(x,1)dx,

0.5L, sinh(a, (x—0.5L,
Toy(x,1) = Ty (£) + mz y (1) ;fh((gsfox) -

cosh(ay(x—0.5Ly))—Agy _ (sinh(0.5a,Ly))
ezyx(1)0.125 sinh?(0.25a,Ly) »Aor =050 L)
where d,m; yx = = kyezyx, Mz yx = Pxez,y,x, eryx = —8xlzyx,

a=0o/(a (OSprx+b)+2k*) oy =7



206 5 3-D HHC equation: A. Buikis, H. Kalis, I. Kangro, 2015 [81]

dy = 0.5Lya,coth(0.5a,Ly) ,ki = 0.25a, coth(0.25a,Ly), px = ki /d,
b, — osh(0.5acLe)—Aox
¥ 8sinh?(0.25a,Ly)

. +B.g.+B,
We can use the optimal parameter a, = w.

Then the initial-boundary value problem (5.14))6 is in the following
form for ODEs of the second order:

2
{ = %zy;(t) +CpaTZ§?(t) + VTeyx(1) = foyux(1),1 € (0,2¢), (5.15)
Tyx 0 :

’Ivzvyv-x(o) = TZ7}’7X707 gt( ) = VZ,)’yan’

2k* L
where ¥ = B;g;+Bygy+Bxgx+Y,Bx= L_;afz,y,x(t) = LLV fo yfz,y<x7t)dxa

: Ly
]}7}1,)@0 = LLV fOL} ’I'Zuy70 (x)dx7 Vz7y7-x70 = [% fO) VO»ZQ’ (x)dx'
The solution of this problem is

{ T,y x(t) = exp(—0.5t/7)(Csinh(kt) 4+ Bcosh(xt))+
a: Joexp(=0.5L (e — &) sinh(k(t — §))G(§)dE,

where T = 1./(cp),k = \/0.25/7% — ¥./T, B= T, x 0,
C= lK(Vz,y,x,O + 2%Tz,y,x,0)v

Y =1/(cp),G(1) = foyx(t)/ (cp).
If 4y, 7 > 1, then the hyperbolic functions to need replaced with the

trigonometrical and the parameter k with \/¥./7 —0.25/72.

If 47,7 =1,k =0, then Csinh(xt) +Bcosh(kt) =t(V, 0+ ZLTTZ,y,x,o) +
T yx0, and gz foexp(—0.5%(t — &) sinh(x(r — £))G(§)dE =
Joexp(—0.5%(t —&))(t — §)G(E)d¢.

(5.16)




Chapter 6

Periodical BCs: H. Kalis, M. Kokainis, A.
Gedroics, 2015 [78]

The solutions of the linear initial-boundary value problem for heat
transfer equations are obtained analytically and numerically. We de-
fine the finite difference scheme with exact spectrum (FDSES), where
the finite difference matrix A is represented in the form form A =
PDP* ( P,D are the matrixes of finite difference eigenvectors and
eigenvalues corespondently ) and the elements of diagonal matrix D
are replaced with the first eigenvalues from the differential operator,
P* is the conjugate matrix.

6.1 The mathematical model

We consider the linear initial-boundary heat transfer problem with the
periodical boundary conditions in following form:

ang‘”) = %(vaTgx”))-i—f(x,t),x € (0,L),t € (0,5),
T(O,t) — T(L,l), Ta(g,l‘) — aTgiJ),t c (O,tf), (61)
T (x,0) = Ty(x),x € (0,L),

where v > 0 is the constant parameter, 7 is the final time, T, f are
given functions.

We consider uniform grid in the space x; = jh, j = 0,N,Nh =1L,
where N is even number.
Using the finite differences of second order approximation for partial
derivatives of second order respect to x we obtain the initial value
problem for system of ordinary differential equations (ODEs) in the

207
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following matrix form
U(t)+VvAU(t) =F(t), U(0)= Uy, (6.2)
where A is the 3-diagonal circulant matrix of N order in the form

2 -10.. 0 0 —1
1 1 -21...0 0 O
0 00..-12 —1

-100... 0 —-12

U(t),U(t),Up, F(t) are the column-vectors of N order.

Circulant matrix A can be described by the elements of a first row
WA = [2,-1,0,0,...,—1]. The 3-diagonal matrix A of N order can
be represented with following difference operator of second order ap-
proximation

2 . T A7
YN+1 =DY1, Y0 = YN

where y is column-vector of N order with elements y;, j = 1,N.

We use from two vectors y!,y? following scalar product [y!,7°] =
N 152

(=1 9,57);

where y is the conjugate value of y.

6.2 The spectral problems

The corresponding discrete spectral problem Ay" = w,y",n = 1,
with circulant matrix have following solution:

V' =G s i)
. 6.4
{,un:;—Zsmz(nnh/ ), 64)
where y? = 9, (x;) = exp(2minx;/L),j = 1,N,i = v/—1 are the com-
ponents of column-vector y”.
For the circulant matrix C = [c] ¢3 +++ ¢n]
the eigenvalues U, can simply obtain in following form
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N—1
Hn = Z Cj+19n(x)).
j=0

From this form follows the eigenvalues of matrix A for different
order of approximation O(h¥), k > 2(see chapterl):
Dk=4,nA=[-3,3,—15,0,--,0,—5,3],

23712
hu, = —4(sin®(wnh /L) + sin (ﬂnh/L))

2 493 | 133
) k=6,"A=[-T,3, 20 90’0 0790’ 2020
R, = —4(sin2(7mh/L)+ sin*(wnh/L) + £ sin®(wnh/L)),

_e 2 205 8 8 1 18 18
k=8 hA=[-3353, 5’3157 ~ 56070 ~,O, (3607 3157 5 1
hu, = —4(sin®(wnh/L) + sin*(znh/L) + 45 sin®(znh/L)+

% sin®(wnh/L)),

The constants C2 = N and we have the orthonormed eigenvectors
¥",y™ with the scalar product [y",5"] = 8, n, Where 8, , is the Kro-
necker symbol.
Therefore the matrix A can be represented in form A = WDW* | where
the column of the matrix W and the diagonal matrix D contains N or-
thonormed
eigenvectors w" = y" and eigenvalues (,,n = 1, N correspondly. From
W*W = E follows that W1 = w*.

The solution of the spectral problem for differential equations

—y"(x) = Ay(x),x € (0,L),y(0) = y(L),y'(0) = y'(L),

is in following form:

yu(x) = VL= 1¢,(x) = VL Texp(2minx/L) ,

where (y,, V) = fOL Vi (X)Pm (x)dx = 8, ,n and A, = (27n/L)? are the
eigenvalues n = 0,41,+2.--- . For the scalar product h[y",7"] the in-
tegral (y,,Vn) is approximated with trapezoidal formula and in the
limit case if 7 — 0 then follows that w,, — A,,.

6.3 The analytical solution

We can consider the analytical solutions of the system of ODEs (6.2)
using the spectral representation of matrix A = WDW* . From trans-
formation V = W*U (U = WV) follows the seperate system of ODEs



210 6 Periodical BCs: H. Kalis, M. Kokainis, A. Gedroics, 2015 [78]
V(t)+VvDV(t) =G(t), V(0)=W*Uy, (6.5)

where V(1),V(t),V(0),G(t) = W*F(t) are the column-vectors of N
order with elements vy (), v (), v (0),gx(t)k = 1,M.
The solution of this system is the function

() = () exp(—xi) + [ exp(—i (i —Dgu(D)dT, (66
0

where K = V.

We can used also the Fourier method for solving (6.1) in the form
T (x,t) = Y rezvi(t)yr(x), where yi(x) are the orthonormed eigenvec-
tors, vi(t) is the solution (6.6),with v;(0) = (T, ¥k )-

For the FDSES the matrix A is represented in the form form A =
WDW?* and the diagonal matrix D contain the first N eigenvalues
dy = A, k=1,N from the differential operator (—g—;) in following
way:
1)dy = Ay for k = 1,N,, where N, = N/2.
2)dk = )vak for k = m
If di = uy, then we have the method of finite difference approximation
with matrix A.

The FDSES method is more stable as the method of finite difference
by approximation with central difference (FDS), because the eigen-
values are larger dy > L.

The results obtained with Fourier series contain on x = 0,x = L 0s-
cillations (Gibbs phenomena). For FDSES method these oscillations
disappear.

If the functions f(x,?),Tp(x) are proportional to the eigenvector
wp(x) = /1/Lexp(2mipx/L), f (x,1) = g(t)wp(x), To(x) = aowp(x),
then the solution we can obtained in the form 7' (x,t) = y(f)w,(x),
where for function y(z) follows the ODEs
¥(t) = =VApy(t) +g(t) with y(0) = ag, A, = (32)%.

We have the exact solution
¥(1) = exp(—vAyt)ao + Jyexp(—k, (1 — &)g(&)dE

The solution we can also obtained in real form:
T(x,t) = Xy (re(r) cos 22K 4 gy (1) sin 2288 4 °;<’>,
F(0) = 55 (el 05 25 4 by ) sim vk )

bie(t) = 2 J§ f(E 1 >cos%d5 brs(1) = 2 i F(E,1) sin ZEE 4,
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where ay.(),axs(t) are the corresponding solutions of (6.6) by

ae(0) = 2 [F Ty(E) cos TR dE, ars(0) = 2 [ Ty (&) sin 2o aE,
8k(t) = bre(t) or bg(t), K = V.
From Fourier series

T(x,1) = Y s ar(t)wi(x), f(x,1) = X, i) wie(x),
bi(t) = (f,wi)+, follows ODEs ak(t) = —vAai(t) + b (1)
with a;(0) = (To, wi)+, & = (2)2. We have following solutions

ax(t) = exp(—vAxt)ag(0) + [ exp(—vA(t — &)by(§)dE.

From orthonormal eigenvectors follows, that b,(t) = g(),a,(0) =

ag, bi(t) = ax(0) = 0,k # p and ap(r) = y(1).
From the discrete Fourier series

T (xj,t >—z’,§/2_N/2ak<t>wk<xj>
flt) =102 n2br(O)wi(x)), Wk(xj) =wh = \/1/Nexp(2mikj/N)
ax(t)w* we have ODEs

or in the vector form U () = Zk
ar(t) = —viar(t) + bi(t)
with a;(0) = (Uo,w*k),bk(t) = (F(t),w*k).
We have following solutions
ay(t) = exp(—Vit)ar(0) + foexp(—viu(r — §)br(§)dE.
From orthonormal eigenvectors follows, that b,(t) = g(t),a,(0) =
ap,br(t) =ar(0) =0,k # p
and a,(t) = y(t), if the eigenvalue p, are replaced with A, and
p<N/2.

We can obtained the solution of the discrete problem also in the
following real form
(1) = T32  (age(r) cos 2 4 ay (1) sin 2260 “oslt)
) = X by 1) cos 22 1 by (1) sin 228 4 bt
bre(t) = 2 XV f;(1) cos 22k 21k s (1) = 2X £(t) sin 22,
where ay, (t) ags(t) are the correspondlng solutions of (6.6) by
are(0) = 2 XN To(x;) cos 2;\5 , ags(0) = ZNTO(XJ)SIH%
gk(t) = bkc( ) or b(t),
Ky = de, dk = U for FDS, dk = /lk for FDSES.

From the FDS the solution of the matrix equation (6.2) is
U(t) =exp(—VvtA)U(0) + fé exp(—VA(t — E)F(&)dE.
Using the matrix A representation A = WDW™* and transformation
V = W*U follows that for every matrix function f(A) = W f(D)W

and V = exp(—vtD)V(0) + [yexp(—vD(t — £)G(&)dE.

~N/2%
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Therefore we have the solution in the form (6.6). If p < N /2 then the
components
ve(0) = (W*U(0)) = N 1W*kT0(xJ) = aOZ/ 1 Twp(x)) =

\a/—%(w*k’wp),
ault) = (W) =45 (w w?) k=T.N.
We get vp(0) = Jhgp(r) = 531, vk(0) = gilt) = 0.k # p

and from (6.6) follows v, (¢)
L(exp(— ity )ao + i exp(—Vity(t — E)g(E)dE).vi(t) = 0.k # p.
For FDSES from U = WV, w’J‘. = Vhwy(x;) and replaced the dis-
crete eigenvalue u, with A, we obtain the exact solutions 7' (x;,7) =
y(O)wp(x;),j=0,N.

If the functions f(x,?), Tp(x) are proportional to the functions fj (x) =
sin(2mpix/L), f2(x) = cos(2mpax/L),
then using the expresions fj(x) = %f(wpl(x) —w_p, (1), o(x) =

0 (@) oy (1),

wop(xj) = wn_p(x;) = Wp(xj)’“_P = Up,A—p=2p

we have the preliminary results and the exact solution for max(py, p») <
N/2.

Example 6.1. If f(x,t) = g1(t)f1(x) + g2(¢) f2(x), To(x) = o f1(x) +
o fo(x)
then we have by (1) = iglz(, L k=py,

bi(t) = 84D k= £y, by(r) = 0,k # (£p1.£p2),

ag(0) = iz, k==£p1,ar(0) =%, k=%ps,a;(0) =0,k # (£p1,£p2).
Therefore,

T (x,t) =d—p, (I)W—m( )+aP1 (t) ( )+a—P2 (t)W—Pz (I)+aP2 (t)wpz ()=
Ji(x) (o exp(— v}Lplt)—i_fOeX( Ap,(t —8))g1(8)dS)+
fr(x)(0nexp(—vAp,1)+ fyexp(— lez(t—é))gz(ﬁ)dé)-

In the discrete case we have the exact solution by replaced the discrete
eigenvalues (L, , Up,, With A, ,4,,.

6.4 Example of nonlinear heat transfer equations

We shall consider the initial-boundary value problem for solving the
following nonlinear heat transfer equation:
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oT _ 9*(g(T))
Frie T‘Ff(T),

where g(T) = T f(T) = aTP is nonlinear functions with a >
0,>1,06>0,T(x,t) >0,Tp(x) > 0.

In paper [5] by (a = 1) is proved with the first kind boundary condi-
tions that

1) by B < 0 + 1 exists global bounded solution for all 7,

2) by B > 0 + 1 exists global bounded solution

for sufficient small ||Tp]||, but for larger ||Tp||, exists finite value of
time T;, when u(x,t) — oo if t — T.

The initial value problem for ODEs (6.2) is in the form

U +AG = F,U(0) = U,

where G, F are the vectors-column of N order with elements g, =
g(u(xkvt))7fk = af(u(x/ﬁt))? k= 17N

The numerical experiment with L = 1 and Tp(x) = x(1 —x) > 0, is
produced by MATLAB 7.4 solver ”ode23s” by first kind boundary
conditions [1].

Fora=5,0=8=3,(B<0o+1),t =10,N =6,10,20 are obtained
following maximal error using FDS and FDSES methods:

1) N =6—-0,0125(FDS),0.0011(FDSES);

2) N = 10— 0.0046(FDS),0.0003(FDSES);

3) N=20-0.0013(FDS),0.0001(FDSES).

In the Figs. 6.1 ,6.2, 6.3, 6.4 are represented 4 type solutions by
To(x) = sin'%(zx), N = 50,6 = 3 for periodical boundary conditions
obtained:

1) B =5,a =100, the solution is “blow up” locally by 7, = 5.481136,
2) B =4,a =100, the solution is "blow up” globally by

T, =0.2020261,

3)B = 5,a = 1, the solutions tends to zero, if t — oo,

4) B =4,a =0.01, the solutions tends to the stationary limit.

The following MATLAB programm is with m.file nelper.

function nelper (N)

sigma=3; sigmal=sigma+l;beta=5;a=100;

N1=N+1l; Tbl=0.05;Tb2=6.4811;L=1;x=linspace(0,L,N1)"';
h=L/N;N2=N-1;NT=[1:N];

1k0=(2*pi/L%NT) ."2; % exact eig-val.
1k2=4/h"2* (sin (pi*h*NT)) ."2; %FDS O(h"2)

= T S SO CR S,
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1k4=4/h"2* ((sin (pi*h*NT)) . 2+1/3% (sin (pi*h*NT)) ."4); %FDS O(h"4

1k6=4/h"2* ( (sin (pi*h*NT)) . "2+1/3* (sin (pixh*NT)) . 4+. ..
8/45% (sin (pi*h«NT)) ."6);%FDS O(h"6)

1k8=4/h"2* ( (sin (pi*h*NT)) . "2+1/3* (sin (pixh*NT)) . 4+. ..
8/45% (sin (pi*h+NT)) . 6+4/35% (sin(pixh*NT)) ."8); %$FDS O(h"8)

d=1k2; 3%FDS

$NH=N/2; d(1:NH)=1k0 (1:NH);

%$d (NH:N2)=1k0 (NH:-1:1) ;d (N)=0; $FDSES

figure

plot (NT, 1k2, '-',NT,1k4,'-."', NT,1k6,'x*',6NT,1k8,'o',NT,d,'d")

legend ('Eig-val O0(h"2) ', 'Eig-val O0(h"4) ', 'Eig-val Oo(h"6) "', .

'Eig-val O(h"8) ', 'Eig-val exact')

W=exp (2*pixh*ix[1:N]'x[1:N]);x=x(2:N1);

A2=zeros (N,N);

$A2=A2+diag(ones (N2,1),1)+diag(ones(N2,1),-1)-2+diag(ones (N, 1)

%$A2(1,N)=1; A2(N,1)=1;A2=A2/(h"2):

%D=—hx (1. /W) *A2*W; $ control

A=real (-hxWxdiag(d) *conj (W) ); %FDS and FDSES

yO0=sin (pi*x)."100;

options=odeset ('RelTol', 1.0e-7);

[T1,Y1]=0del5s (@SIST, [0 Tbl],y0,options,A,sigmal, beta,a);

im=max (imag (Y1l (end, :)));

figure,plot (x,y0, 'k-")

hold on

plot (x,real(Yl(end, :) '), "kx")

[T2,Y2]=0del5s (@SIST, [Tbl Tb2], ...

Y1l (end, :),options, A, sigmal,beta, a);

plot (x, real(Y2(end, :) '), 'ko")

grid on

title(sprintf ('beta=%2.0f,sigma=%2.0f,a=%3.1f, .

T1=%8.6f,T2=%8.6f',beta, sigma,a,Tl(end),T2(end)))

xlabel ('\itx'), ylabel('\itu')

legend('Sol.U(x,0)','Sol.U(x,Tl)"', 'Sol.U(x,T2)")

figure

T=[T1l;T2];Y¥=[max(real (Y1 (:,:)"')) ';max(real(Y2(:,:)"))"']l;

plot (T, Y)

grid on

title(sprintf ('DV lab.aproks.DS,N=...

%$3.0£f, time = %8.6f ',N,T2(end)))

xlabel ('\itt'), ylabel('\itu')

function F=SIST(t,y,A,sigmal, beta, a)

F=Axy. sigmal+ax*y. "beta;

T,
T

We have following results by N =40, =5,06 =3,a =100
= 5.448350(FDS — O(h?)), T. = 5.536841(FDS — O(h*)),
= 5.539480(FDS — O(h%)),T. = 5.539669(FDS — O(h*)),T, =

5.539397(FDSES).
The eigenvalues depending on the order of approximation and the re-
sults of FDSES we can see in Figs. 6.5, 6.6
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beta= 5sigma= 3,a=100.0,T1=5.481100,T2=5.481131

beta= 4,sigma= 3,a=100.0,T1=0.202000,T2=0.202600

9
8
i)
5 o o

o o 7
o ) s

4 ° ° —
o o 5
s3 O 2 1 s 4

0 ¥ * 0

0*** ***0 3

2 o o ]
& "% :

ol
ol ?, 1
o )

1 58% %%
0
El

0 02 04 06 08 1 02 04 06 08 1

Fig. 6.1 U oo forx=0.5,=5,0=3,a=

100,T, = 5.481136
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Fig. 6.2 U — o for x € (0,1), p = 4,0 =
3,a=100,T. = 0.2020261

beta 5sigma= 3,a-1.0,T1=0.050000,T2-25.000000 beta= 4,sigma= 3,a=0.0,T1=0.050000,T2-25000.000000
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Fig. 6.5 Eig-values of matrix A depending on
the order of approx. by N =40

Fig. 6.6 The blow-up solution usind FDSES
by B =5,0=3,a=100

6.5 Example of Burger’s equation

For numerical experiments we consider following nonlinear
initial-boundary problem for Burger’s equations in following form:



216 6 Periodical BCs: H. Kalis, M. Kokainis, A. Gedroics, 2015 [78]

dT (x,1) 9°T (x,1) T (x,1)
=V —T(x,t)——=>
ot Jx )=o)
where
1) To(x) = 4vmsin(27x) /(2 + cos(2mx)), or
2) Ty(x) = sin'®(zx),x € (0,1).
Using the tranformation 7' = —ZV%
we can be obtain homogenous linear heat transfer equation 8\/5;:,1) =
92V (x,)

v axz .

For the first case of initial conduction we have the analytical solution:
V(x,t) =2 +exp(—4mw>vt)cos(2mx),
T (x,t) = 4vmexp(—4m?vt)sin(27mx) /V (x,1).

In this case the method of lines is in the form

U(t) 4 VAU (1) = —0.5A,U(t)?, U(0) = Uy,

where A| = ﬁ[o, 1,---,0,—1] is the 3-diagonal circulant matrix of N
order.

The numerical experiment with v = 1,7 = 0.2, is produced by MAT-
LAB solver ”odel5s” . In the Figs. 6.7, 6.8 we can see the results
obtained by N = 40 for both type initial conditions by three moments
of timet = 0,1; =0.01,1, > 1;.

nu= 1,T1=0.010000,T2=0.020000 nu= 1,T1=0.010000,T2=0.050000,max=1.012881,err=0.155089
1 8

Sol.U(x,0)

* SolU(xT1)
O Sol.U(x,T2)
< ExactU(x,T2)

0.9

0.8

07

06

S 05

0.4

03

02

0.1

0 0.2 04 06 0.8 ) 02 0.4 06 08 1

Fig. 6.7 Numerical solution by N = 40,1, = Fig. 6.8 Numerical and analytical solution by
0.01,1, =0.02 N =40,t; =0.01,/, =0.05,err =0.155
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6.6 Example with linear heat transfer equation

For numerical calculation we consider the initial boundary value prob-
lem (6.1) with

f=0,v=L=1,Ty=sin(27x),T(x,t) = sin(27x) exp(—4 * 7°t).
We have following MATLAB m.file SiltPer:

%$system ODE U_t+k AU=f with periodical BC
%t=Tb,u(x,t)=sin(2 pi x)exp(-4 pi~“2 t), k=1, £=0,N-even
function SiltPer (N)
N1=N+1;MK=20; Tb=0.2;L=1;
x=linspace(0,L,N1) ';t=linspace (0, Tb, MK) ;
h=L/N;N2=N-1; k=1;x=x(2:N1) ;
%$A2=A2-diag(ones (N2,1),1)-diag(ones(N2,1),-1)+2+xdiag(ones (N, 1)
%$A2(1,N)=-1; A2(N,1)=-1; A2=A2/h"2; %matrix A, control
NT=(1:N)'/L;
1k=4/h"2x (sin (pi*h*NT)) ."2; %0(h"2)
1k=4/h"2% ((sin (pi*h*NT)) . 2+1/3% (sin (pi*h*NT)) ."4) ;%0 (h"4)
1k=4/h"2* ((sin (pi*h*NT)) . "2+1/3% (sin (pi*xh*NT)) . “4+.
8/45% (sin (pi*h%NT)) ."6) ;%0 (h"6)
1k=4/h"2% ((sin (pi*h*NT)) . "2+1/3% (sin (pi*h*NT)) . " 4+. . .
8/45% (sin (pi*h*NT)) . “6+4/35% (sin (pi*h%NT)) ."8) ;%0 (h"8)
Ck=sqrt (h/L);
1k0=(2+ (1:N) '*pi/L) ."2;
d=1k; %FDS
NH=N/2; d(1:NH)=1kO0 (1:NH);
d(NH:N2)=1kO (NH:-1:1) ;d(N)=0; $FDSES
W=Ck*exp (2xpi*ix (1:N) '*x'/L)';
Wl=Ck*exp (—2+*pi*i* (1:N) '*x'/L)"';
A2=Wxdiag(d) *W1l; %FDS or FDSES
yl=sin (2xpi*x); % init-cond
P=Wlxyl;Pl=zeros (MK, N);
for k=1:N

b=d(k); %FDS or FDSES

P1(:,k)=P (k) *exp(-b*t');
end
P2=(WxP1') ';
prec=-sin (2xpi*x) xexp (—-4+*pi~2xt) ;% exact
Mal=max (max (abs (P2-prec'))); $max error an.
Xl=ones (MK, 1) *x';Y1l=t'*ones(1,N);
figure,plot (t',max(abs(P2(:,1:N) '—prec)), 'kx')% max error on t
title(sprintf('err. Max-sol.an.on t, Max=%9.7f ',6Mal))
xlabel ('\itt'), ylabel('\itu')
figure,plot (x,P2(end,1:N)"', 'ko")
grid on
title(sprintf('Sol.an.on x by Tb., Max=%9.7f ',Mal))
xlabel ('\itx'), ylabel('\itu')
figure, surfc(X1l,Yl,abs(P2-prec'))% error anl.
colorbar
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4 xlabel('x'), ylabel('t'), zlabel('u')
4 title(sprintf('err. anal.,tNr.=%4.1f,max=%9.7f',MK,Mal))

Using the operator SiltPer(10)we obtan following maximal errors
(tf = 0.2):
0.01133 (FDS-O(h?)), 0.00057 (FDS- O(h*)),
0.00004 (FDS -0(h®)), 2.10~° (FDS-0(h®)), 10~ (FDSES).
By N = 40 the results are:
0.00074 (FDS-0(h?)),2.10~% (FDS- O(h*)), 8.10~7 (FDS -0O(h%)),
3.10~'" (FDS-0(n?)), 10~1* (FDSES), (see Figs. 6.9, 6.10)

. anal. {Nr.=20.0,max=0.0007444 X107 err. anal. {Nr.=20.0,max=0.0000000 X107
2

Fig. 6.9 Error with FDS by N = 40, 0(h?) Fig. 6.10 Error with FDSES by N = 40

6.7 Example of heat transfer equation with the periodical BC

We consider the initial boundary value problem (6.1) by L=1,v =
1, =0,Ty(x) = sin(2tmx), where m is integer in (1,N).

Then the exact solution is T'(x,?) = exp(—4n>m?t) sin(27wmx).

The solution of (6.1) with the Fourier method can be obtained in
form

T(x,t) = Y5 vi(t)wk(x), where vi(t) is the solution of 6.6) in the
form vy (t) = exp(—iut)vi (0, ki = dj = 412k,

v(0) = [y To(x)wk(x)dx =0, v ( ) = 0 for k # £m, v (0) = %3,

Vin(t) = iexp(*(zziﬂm) )’

T (x,2) = V()W ™(x) 4+ v ()W (x) = exp(—4w?m?t) sin(27wmx).
Therefore we have using the Fourier method the exact solution.

We can consider the analytical solutions for FDS of (6.2) using the
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spectral representation of matrix A = WDW,. From transformation
V =W, U(U = WV) follows the seperate system of ODEs (6.5).
The matrix solution of the system (6.5) is V(t) = exp(—Dt)Vy,D =
diag(y) or in the form (6.6),
where vy (t) = exp(— K&t )vi (0, K = g,
ve(0) = (W*Up) = 0, v (t) = 0 for k # m,k # N —m.
From py_i = e, w % = wk follows
vm(0) = Y vy (0) = =¥
Therefore
U(t) = exp(—ut)Up, where Uy = (sin(27wmxy ), - - - ,sin(2wmxy)7 is
the column-vector of the N order,
xj=jh,j=1.N,Nh=1.
The solution can be obtained in the matrix form
U(t) = Wexp(—Dt)W*Uy.
For the FDSES u,, = d,, = (2tm)? and we have also the exact solu-
tion.
Using the discrete Fourier transformation
U() = X0 ai (6w (Awk = k), we get ay (1) = exp(—et)ax (0),
where
ar(0) = Up.wk = 0 for k # m,k # N —m, an(0) = %N an_,(0) =

_ VYN
2

We have U (t) = ap, (t)W" +an—_m(t)W]' = \/2—17 exp(—Umt ) (W" —w) =
exp(—tmt)Up.

For numerical calculation we consider the initial boundary value prob-
lem (6.1) with t; = 0.05,L = 1,f = 0,Ty = sin(2mwmx), for m =
1;2;3;4,N = 10.

We have following MATLAB m.file Silt m:

1 %t=Tb,u(x,t)=sin(2 pi m x)exp(-(2 pi m) "2 t),m<N-even
> function Siltm(N)

3 N1=N+1;MK=10;m=4; Tb=0.05;L=1;

4+ x=linspace(0,L,N1)';t=linspace (0, Tb,MK);

s h=L/N;N2=N-1;x=x(2:N1);

6 %$A2=A2-diag(ones(N2,1),1)-...

7 %diag(ones(N2,1),-1)+2xdiag(ones(N,1));

s %$A2(1,N)=-1; A2(N,1)=-1; A2=A2/h"2; %matrix A, control

9 NT=(1:N)'/L;

10 lk=4/h"2% (sin (pi*h*NT))."2; %0(h"2}

11 %$1lk=4/h"2x% ((sin (pi*h*NT)) . " 2+1/3* (sin (pi*h*NT)) . 4);%0(h"4)
2 %$1k=4/h"2x% ((sin (pi*h*NT)) . 2+1/3% (sin (pi*h*NT)) . " 4+. ..
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%8/45% (sin (pi*h*NT)) ."6);%0(h"6)
%1k=4/h"2* ( (sin (pi*h*NT)) . "2+1/3* (sin (pi*h*NT)) . " 4+. ..
%8/45% (sin (pi*h*NT)) . "6+4/35% (sin (pi*h*NT)) ."8);%0(h"8)
Ck=sqrt (h/L) ;
1k0=(2* (1:N) '*pi/L)."2;
d=1k; %FDS
$NH=N/2; d(1:NH)=1k0 (1:NH);
$d (NH:N2)=1k0(NH:-1:1) ;d(N) =0; $FDSES
W=Ck*exp (2xpixix (1:N) '*x'/L);
Wl=Ck*exp (-2+pi*i* (1:N) '+x'/L);
A2=Wxdiag(d) *Wl; %FDS or FDSES
yl=sin (2xpi*mxx); % init-cond
P=zeros (N, 1) ;P=Wlxyl;Pl=zeros (MK, N);
for k=1:N
b=d(k); %FDS or FDSES
Pl (:,k)=exp(-bxt')*P (k) ;
end
P2=(WxP1.').';% this is transponation operator
P21=Wxdiag (exp (—d*t (end) ) ) *Wlxyl; $okei !
prec=sin (2xpi*m*x) *exp (- (2xpi*m) "2xt) ;% exact
Mal=max (max (abs (P2-prec'))); $max error an.
Xl=ones (MK, 1l) *x';Y1l=t'*ones(1l,N);
figure,plot (t',max(abs(P2(:,1:N).'-prec)), 'k*x')% max error on t
title(sprintf('err. Max-sol.an.on t, Max=%9.7f ',6Mal))
xlabel ('\itt'), ylabel('\itu')
figure,plot (x,P21, 'ko',x,prec(1l:N,end), '*',x,P2(end,1:N), '-")
$figure,plot (x,P2(end,1:N) "', 'ko"')
grid on
title(sprintf('Sol.an.on x by Tb.,Max=%9.7f ', Mal))
xlabel ('\itx'), ylabel('\itu')
figure, surfc(X1l,Y1l,abs(P2-prec'))% error anl.
colorbar
xlabel('x'), ylabel('t'), zlabel('u')
title(sprintf('err. anal.,tNr.=%4.1f, max=%9.7f',MK,Mal))

Using the operator Siltm(10)we obtan following maximal errors

(see Tab. 6.1):

Table 6.1 The FDS maximal error depending on order of approximation and m by N = 10

m

Method|m=1 m=2 m=3 m=4

O(h%) 0.0115 [0.0457 [0.0899 [0.0990
O(h*) |5.107* [0.0084 [0.0290 [0.0410
O(h®) |3.107> |0.0019 |0.0126 |0.0234
O(h%)) 2.1076 [5.107* [0.0060 [0.0153
FDSES |1.10713|6.10716|1.10715|7.10~16

In the Figs. 6.11, 6.12 we can see the FDSES exact solutions by
=4and N = 10,N =40.
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X107 Sol.an.on x by Tb.,Max=0.0000000 X107 Sol.an.on x by Tb.,Max=0.0000000

® ® 0 o o &

Fig. 6.11 FDSES solutions by N = 10,m = Fig. 6.12 FDSES solutions by N = 40,m =
4,1y =0.05 4,1y =0.05

6.8 The mathematical model for heat transfer equations with
convection

We consider the linear heat transfer equation in the following form:

oT (x,t)  9°T(x,t) , JT(x,1)
% =V e +a 5 + f(x,1) (6.7)

with the periodical boundary conditions(6.1) (a=const).
We can used the Fourier method for solving the initial-boundary
value problem in the form

T(X,t) = ZkEZak(t)wk(x>7f(xat) - ZkEZbk(t)wk(x)v

where wX(x) are the orthonormed eigenvectors, by (t) = (f, wX(x))(see
chapter 1).

Then for the unknown functions ay () get the complex initial value
problem for ODEs of first order:

a(t) + ar(t) e = b(t),
ar(0) = 1 fgL To(s) exp =2k s, (6.8)
bi(t) = 1 Jo f(s,1) exp =5 ds,

2.
where Ay = v(%) —al%‘.

The solution of (6.8) is

ax(r) = exp(~An)a(0) + [ exp(2a)(¢ - 5))bi(s)ds.
0
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The solution with the Fourier method can be obtained in real form
when

) = Ty (bel)w* () + b ()w ™ (x)) + 242 =
5 Y01 ((bi(0) +bi(2)) (W (x ) wh (x)) + (bi (1) —
P = 757 (bie(1) cos 235+ by (1) sin 285 + el
where

brelt) = 2 (by(0) +b_i(1)) = i S £ (.0) (9 () () =
%fO ( ) 27'lfksds7 |

bys(t) = f(bk( )—bk(1)) = ﬁf(ff(x,t)(W’i(X) —wh(x))dx =
7 2 (L f(s,1)sin ks gs.

Therefore the solution we can obtain also in real form:

T(x,1) = iy (age(r) cos 22K+ ap () sin 22k - “oct),

where ay.(),axs(t) are unknown functions.

From f(x,t) BTa(;c,t) o (82(]9";5,;‘) _'_aaTa(;c,t))

follows .

Fe,1) = X7 (dge(r) cos 25 4 g (1) sin 2785) 4- o504

Y1 (axe(r)Re(Ar) + ans (1 )Im(lk)) cos 2’2’”‘

+(ars(t)Re(Ay) — age(t)Im(Ag)) sin 272’”‘),

because (ax (1) X +a—i(t) A1) /VL = arc(1)Re(Ae) + ars(1)Im(Ay),
i(a (1) g — a—i(t)A) /L = ags(1)Re(Ax) — are (1) Im(Ay),

where ag.(1) = ak(t)‘\;%k(l) ais(1) = l(ak(t)\;;—k(t)

are the coefficients in the expression from the solution 7'(x,7).
Therefore we obtain the initial boundary value problem for the system
of two ODEs:

age(t) +age(t)Re(Ax) + axs (1) Im(Ay) = b (t),

ags(t) + ags(t)Re(Ay) — ae(t)Im(Ay) = bys(2), 6.9
a1e(0) = 2 [ Ty (s) cos 22, ©5)
ags(0) = 2 [0 To(s) sin 2Z& .

6.8.1 Solutions of the system of two ODEs

In the matrix form we have

Ar(t) + AAi (1) = Bi(1),Ax(0) = Ao, (6.10)
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where

[ Re(A) Im(Ag)
M= <_1m(§k) Re(Ay)
Ay (1), By (t),Axo are the column-vectors with elements
(akc(t)aaks(t))a (bkc(t)vbks(t))7 (akc(0)7aks(0))'

We can represented the matrix Ay in the form Ay = PDP~!,

(05 i\ o (1 i\ (A0
WhereP_(—O.Sil))’P _(05'05)>’D_(07Lk))’

Af = Re(A) —ilm(Xy), Re(Xy) = v4722k dm(Ay) = — 22k

Then the matrix solution of (6.10) Az (t) = exp(—At)Ao+ [ exp(—A (t —
$)Bi(s)ds

with the transformations Ay (1) = P~1A;(t),Ax(t) = PA(t) we can ob-
tain in the form

) 1s the matrix of second order,

Au(t) = exp(=Dit)Ayo + / exp(—D(t — $)Bu(s)ds.

where AkO = P_lAk(),Bk(l) = P_lBk(t).

For this seperable we can determine the elements dy.(t),dy(t) of the
column-vector Ay

depending on the elements d.(0) = ag.(0) 4 iags(0), drs(0) = 0.5ia;.(0) +
Q-Saks (0)7 -

be(t) = bre(t) +ibgs(t), bis(t) = 0.5ibge (1) +0.5bys(1)

of the column-vectors

Ao, By (1) we obtain the solution of the ODEs system (6.8) in form

( al;c(l) = exp(—Re(A)t)(axc(0) cos(Im(A)t) — axs(0) sin(Im(Ax)t))+
Joexp(—Re(A)(t —s)) (bie(s) cos(Im(Ax ) (t — 5))—

Ds(s) sin(Im(Ag)(t —s))ds

s (1) = exp(—Re(24)1) (are (0) sin(Im( A1) + axs(0) cos(Im(A)r))+

Ji exp(—Re(A) 1 — 5)) by (5) sin(Im(A) ¢ — 5)) +

bis(s) cos(Im(A) (¢ — 8))ds.

\

(6.11)
For k = 0 we obtain ao(t) = [ boc(s)ds +ao.(0).
In the limit case t — oo if the source function f = f(x) not de-
pending on ¢ the we obtain from (6.10) the stacionary solution (see
chapterl).
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If a = 0 then we have the expressions (6.9 -6.11) with (Re(A;) =
v(Z2)? Im(A) = 0.

6.8.2 Example with special date

For numerical calculation we consider the initial boundary value prob-

lem with f(x,t) = —2macos(27x) exp(—4m?t), Ty = sin(7mx), T (x,t) =

sin(7x) exp(—47mt),v = 1.

From (6.8) follows:

T (x,t) = a1 (t) exp(27ix) +a_i (t) exp(—27ix), a1 (0) = 5.,

a-1(0) = —k,by (1) = b1 () = —maexp(—4m*r).

M =4n? —27ai, Ay =471+ 27ai,

ay(t) = exp(—A1t)/(2i) 4 (exp(—2mait) — 1) /(2i),

a_1(t) = —exp(—A_1t)/(2i) — (exp(2mait) — 1) /(2i).

Therefore

T (x,t) = (exp(A1t) exp(2mwix) — exp(A_1t) exp(—2mix))/(2i)+

exp(—47?t)(sin(27x) — sin(27(at +x))) = exp(—47*t)sin(27x).
From (6.11) we have:

T (x,t) = aj.cos(2mx) + ajssin(27x), a1 (0) = 0,a14(0) = 1,

b15(0) =0,b1.(0) = —2maexp(—4n'),a.(t) = exp(—n’t)(sin(27mat) —

sin(27mat)),

ays(t) = exp(—m?t)(cos(2mat) 4+ 1 — cos(2mat)),

T (x,t) = exp(—m’t) sin(27x).

6.8.3 Discrete problem with the Iljin FDS

For the discrete problem we have the system of N ODEs in the form
of (6.2) )

Ut)+AU(t)=F(), U(0)="Uy,
where the circulant matrix A = w27, —(r+@),0,0,...0,—(y— )],
with the eigenvalues [i; = ‘;l—‘z’(sin(kﬂ/N)z(y— iccot kﬁ”),

¥ = acoth(a), a = £ ( the order of approximation O(h?))
and with the elements of the orthonormed eigenvectors

wh = \/gexp(Zirikj/N),w’;j = \@exp(—znikj/N)k,j =1,N.
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If h — 0, then fi; — Ak.
For the column-vector F () elements f;(t) we similarly from

the chapter 1 obtain f;(z) = Z*N2 (bre(t )cos%—k by (t )sm%) +
boe(t

02( ) :
where

bl = 0 10005 58 bot) = FEL ()i 5L =T

bo(t) = (1) = = X, £5(0), buclt) = be(t) = Zobolt) b, (1) =
2

VN N
b, (t) = § Xy cos(jm), No = 5, b,s(r) = bys(r) = 0, ;5 B =
N2 IB +ﬁN/2.

For the soh;/tlon - - "
*INp Ky Y29 apc\?
C
() Zk 1(ak()cos +ag ()Sm )+ 5
and
45(0) = L% (ac(0) cos 57 + a5, (0)sin 2 + 22

27k 2k
with a;(0) = N Zj:l ”j( )COS%» ags(0) = N 21};1 ”j( )Sln%
we need determine the unknown functions ay.(t),as(t) of the expres-
sions - - _
c(t
F1(0) =ty + (Au); = T3 (due(r) cos 2 g (1) sin 2R + 50
2mkj

Y (e (1) Re(fix) +axs 1 >1m<uk>>cos%+ (axs(£)Re (i) — ae (1) Im(fly)) sin 25,
Therefore, for the determine the functions ay.(t),a(¢) we obtain

the systems of ODEs (6.9,6.10) and the solution (6.11), where the

eigenvalues A; are replaced with the discreate eigenvalues fi,k =

I,N.
If a = 0 then Re(fi;) = (sm(kn/N) Jdm(fiy) =0.

6.8.4 Discrete problem in multi-points stencil

Using the multi-points stencil with the order of approximation O(h*"),n =
1,2,3,... (see chapter 1)we have

A = VA —aA®, iy = vy — ailu?|, where wy,p? are the eigenvalues
from circulant matrices A, A°.

The complex expressions we can obtain from following matrices rep-
resentation

A=WDW* A® =WDW* D = diag(),D° = diag(1?).

Then the system of ODEs is
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y 0
V(t)+(vD—aD")V(r) = F(t),

where V(2) = WU (¢), U(t) = WV (1), F P(1) = W*F(t) or
V(1) + (Vi — ap)vi(t) = fil(t) (), fi(2)
are the elements of column-vectors V (¢), F(t).)
We have followng solution:

vi(t) = exp(—fit )vi(0) +/GXP(—ﬂk(f— ) fi(t)dt,k=1,N—1

where fiy = vy —ap, v (1) = vn (0) + fo fn (T)d T, v (0) = (WU (0) ).
The real solutions we can easily obtain from following expressions:

_ k k 20,k _ k A0, k _
AWE = ek Awk = ewk, A%k = il ]w AWK = —i| D |wk
or Acosy = L cosg,Asing = pysing, A%cos; = ],uk\smk,AO sing =
0
|nuk | COSk,
where cos;, sin; are N-order column-vectors with the elements
cos%,smM j=1,N.

We have following properties for the scalar products:

2
# €08 COS;y = O m,

2 sing sing, = S, ]%] cosy sin,, = 0. Then U(t) = ):;:Nzl (cige (1) cosy +
dgs(t) sing) + =5 OC( ) coso,
( ) =L (a0 cose-+at) sm) + 95 cos,
AU(t) = Zk 1,uk(akc(z‘)cosk +ay(t) sing ), Acosg =0,
AU (1) = XM | 0] (—age (1) sing +ag (1) cosy ), A% cosp = 0,
F(t)= z*Nz (k1) o +b(t) i) + 2elt) coso,
bre(t) = zF(f)COSmbks(f) = $F(1)sin,
U(0) = L™ (axe(0) cosg +bis(0) siny) + 259 cos,
where the unknow functions ay. (), ax(t) are obtained from following
ODEs
dre(t) + Viag(t —a\l%’aks( ) = bie(1),
ds(t) + V iags (1) + al | ae () = bis (1), (6.12)
aye(0) = ZUpcosy, axs(0) = £ Upsing..

This problem is equal to (6.9), where Re(A) = V., Im(A) = —a|u?|.
Using the eigenvalues A in (6.12) we have FDSES.

For initial data proportional to fixed frequency kg < N/2:

Up = accosy, +agsing,, F(t) = be(t) cosy, +by(t) sing,
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we have

aic(0) = ac O, k> aks(0) = agx, i,

bkc(l‘) = bc(t)8k07k,bks(l‘) = bs(t)Sko,ka and

U(t) = ayyc(t) cosg, +ag,s(t) sing,,

where ay(t),ar,s(t) are the solutions of ODEs (6.12) in the form
(6.11), where Re(Ay) = Vi, Im(Ay) = —a|u).

6.8.5 Example with Euler-Newton FDS for solving the Cauchy
problem

We consider the discrete homogenous heat transfer problem in multi-
points stencil with the periodical boundary conditions (6.2). Using
Euler-Newton FDS we have in every time step (¢, =nt,n=1,2,...)

(U™ —U™) /1 = —T'AU",n>0,I" = (exp(—AT) — E)(—AT)"}),
(6.13)
where
U"=U(t,),U° = Uy, A,E are the N-order circular and unit matrices.
From (6.13) follows U™ = exp(—AT)U" or U" = exp(—At,)Up.
For matrix A representation follows
exp(—AT)W = exp(—DT)W or exp(—AT)w* = exp(—w; T)wk,k=1,N.
Then V" = W*U",(U" = WV"),U" ! = wvrtl,
Vit — exp(— DT)V” VO =wUj.
For real solutions we have
exp(—AT) cosy = exp(— LU T) cosk,exp( —AT) sing = exp(— L T) sing
n+1

and U"“ = Z;Nzl (az:rl COoSy —|—a smk) + 0‘ oSy,
*N-
=Y, (a, cosk+ak§smk)—|— e €080,

exp(—A‘L’)U”) ZzNzl exp(— W T) (akccosk +aj, sing) + 5¢ e oS,

Uy = ):k l(akc COSy +aks sing) + % e oSy,

agc ZUocosk,a,?S 2U0s1nk

Therefore, we get

1 1
aZZ“ = exp(— /.Lk’v)akc,aZf = exp(—/.tkf)a%s,n =0,1,2,...,
oraj. = exp(— “ktn)akcaaks = exp(—xln )y,

_ vV 0 0 G,
=Y, 7 exp(— ity ) (a, cosy +ay sing) + =5 cosy .
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6.9 The system of parabolic type equations with the periodic
BCs

We consider the initial - boundary problem of linear M-order system
in following form:

infet) — YU | 9 (ki s 2250) + £, (x,1), 5 € (0,1 € (0,17),

m
(0,8) = Ty(L,t), 22 aﬁ?’) MnlLd) 4 (0,1),

Tin
Tn(x,0) = Tpo(x),x € (0,L),m=1,M,

(6.14)
where K is the positive definite matrix with the elements &y, s , T, 0, fn (X, 1)
are given functions.
This system we can rewriten in the matrix form

8u(g)tc,t) :%(w% )+ f(x,1),x € (0,L),r € (0,tf),
u(0,1) = u(L,1), 250 = 24 1 ¢ (0,1), (6.15)

where u, f are column-vectors with elements7,,, f,,,m = 1,M.
Using the Fourier series the solution we can obtained in the following
form:
u(x,t) =Y (ac(t) cos 27ka + ayg (1) sin 2”’“) + WFT@,

o b -
fx,1) = Zk 1 (bre(t) cos =1 2Zkx 4 b, (1) sin 2”kx) + Oz(t),

k

bre(t) = 7 Jo (&,1) cos 7= Mké A&, bis(t) = 2 [ f(E,1)sin 2Z édé

where the column—vectors axe(t),ais(t) of the M order are the
corresponding solutions of the following differential equations

dre(t) +lkkakc(t) = bre(t),a1c(0) = %foLuoé)COS 2nk§d€
ks (1) + M Rags (1) = brs (1), 45 (0) = 2 [Fup) sin 27rLk§d§,
(6.16)

where by (t),bys(t) are the column-vectors of M order.
The solution of this system is the vector functions

{ age (1) = exp(~2R1)are(0) + [y exp(~ MK (t = 1)be(2)d.
aks(t) = exp(—/let)akS(O) + fO €Xp(—7LkK<t — T))bks(’l')df.

(6.17)
For the discrete problem ( O(h*") order of approximation ) we have
the system of ODE:s in the following form:
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vi(t) = KAv(t) + fi(0),r € [0,15], 6.18)
vj(0) =up(xj),x; = jh,Nh=L,j=1,N, '

where the column-vectors of the M order v;(t) ~ u(xj,t), fi(t) =
f(xj7t)a

the expression of the finite difference operator in multi-points stencil
with 2n+1-points (N > 2n+ 1)

Avj = L(C (vj n +vj+n) + ... +C1(vj_1 —|—vj+1) +C0vj),

— — (n')z( ) L s :
Co Z 1Cp, Cp i) P 1,n (see section 1).
We have followmg matnx representation for circulant matrix

(A=—-A)=—5[Co,C1,....Gp,0,...,0,Cy, .., C1],
with the eigenvalues

2((m—11))>4m-1
W= 73 Y Pysin®(ntk/N), Py %
Using the discrete Fourier method the solution we can obtained in the
following form:
Wi(e) = g2 (are(1) cos 2 + ays(1)sin 25 ) 450,

bo.

1) = £ 1<bkc<r>cos S+ (1) sin 2 ) 250,
Dre(t) = 7 L)y fi(t) cos 5l by (1) = F T (1) sin 25,
where akc(t) aks( ) are the corresponding solutions of (6.16,6.17 , A
is replaced to y ) with '
ake(0) = 2 XY ug(x;j) cos L, g, (0) = 2 XN ug(x;) sin 25
For FDSES, replaced the discrete eigenvalue p; with A; we obtain the
exact solutions for initial data with the frequency < N/2.

6.10 The system of parabolic type equations with convection

We consider the initial-boundary problem of linear M-order system in
following form:

aaitm: L (gx<kmsaaj;?1) 887;41)_1_](’",
T(0,1) = Tu(L,1), ;x 4) _ L f>, (6.19)
Tn(%,0) = T 0(x),x € (0,L),m =

where K is the positive definite M-order matrix with different positive
eigenvalues Uk > 0 and the elements &, ¢, P is the real M-order matrix
with different real eigenvalues up and the elements p, ,m,s = 1,M..
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This system we can rewriten in the matrix form

;g ))+P‘9“;f +f(x1),
u01) _ L) 1 e (0,1p), (6.20)

where u, f are column-vectors with elements7,,, f,,,m = 1,M.
Using the Fourier series the solution we can obtained in the following
form:

u(x,t) = Y5 (ar(t)cos Z’ka + ags(t) sin 2”"’“) aoa(t) ,
v 2mkx 2mkx b()c(t)
fxt) = Xpe (bre(t) cos <55 + by (t) sin =27 ) - =5
bie(t) = 3 [ F(§,1) co 2’”‘%5 bis (1) = Lfo F(E.1)sin 2 g€,

where the column-vectors akc(t) ais(t) of the M order are the
corresponding solutions of the following differential equations

{ akC(t) + A‘klgakC(t) - %Cpaks(t) = bkc<t>7 (6 21)
aks(t) + MeKays(t) + %Pakc(t) = by(t), '

where bkc( ), bys(t) are the column-vectors of M order,

are(0) = 7 Jiy uo& ) cos 2 dE, ars(0) = 7 [ uo& ) sin Ede.
The solution of this system we can obtained in following form:

(1) = exp(—Rt)ag (0) + / exp(—R(t — ©))bi(t)dT,  (6.22)
0

where a;, by are the column-vectors and R = ( MK — MkP)
’ Zkp 0K

the matrix of the 2M order.

For the discrete problem ( O(h?") order of approximation ) we have

the system of ODE:s in the following form:

{v'j(t) = KAv;(t) +PA%;(t) + f(1).1 € [0,17], (6.23)

(0) = uo(xj),xj = jh,Nh=L,j=1,N,

where the column-vectors of the M order v;(t) =~ u(xj,t), f;(t) =
f(xjat)a

the expressions of the finite difference operators in multi-points sten-
cil with 2n+1-points (N > 2n+1)
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Avj= hlz(Cn(vj,nijﬁn) + .. —|—C1(Vj_1 +vjt1)+Covj),
_ _ym _ 2m)(=1r- — 15
€0 =Lyt Cpr O = a0 TP = 1
A% =g (en(Vien = Vimn) + 1 (Vi1 —vjo1)),
S 1 ) 1,n ( see section 1).
P = pln—p)ntp)o P T 0
We have following matrix representation for circulant matrices
A=—A=—5[Co,Cl,....Gy,0,...,0,Cp, ..., Cl,
with the eigenvalues
. 2((p—11))%4r-!
W = %ZZZI 0, sin*’(nk/N),Q, = %
and A = AV = }11[0 ClyoesCny0,..,0,—Cpy ..oy —c1],

with the eigenvalues ,uk 2i 7 Lp—1 Cpsin 27;‘}’]{

Using the discrete Fourier method the solution we can obtained in the
following form:
Vyle) = Ei (one (1) cos 2 -y (1) sin 2+ <251,

boe
1) = £ 1<bkc< 1)oos B + by 1) sin D)+ L,
bie(t) = § £ fit) cos e i () = F N £3(0) sin 25,
where akc(t) aks( ) are the correspondlng solutions of (6.21,6.22) and
7Lk, k-are replaced with p, Im( ).

2nkj 2wk j

2k j k
akc(()) = NijluO(xJ)COS NJ7 aks(0) = %}ZIJV 1”0(35])51“&

This real form we can obtain also from following expressions

Acosy = iy cosg, A’ cosy = — |,u,9| sing, A sing = iy sing, A% siny = |,u,?| coSy,
where sing, cosy are N-order column-vectors

with the elements sin 2%‘] ,COS %

and using the orthonormed conditions

21}’:1 sing cosy = 0,):]}[:1 sing sing = ley:l COSj COSg = %Sk,s-

Then for fixed frequency k in the initial data the solution can be write

in the form u(t) = d,(t) sing +d.(t) cosy, of vector-functions, where
dy(t),d.(t) are unknown the time-depending vector-functions.

Then i(t) = dy(t) sing +d.(t) cosg, Au(t) = px(dy(t) sing +d.(t) cosy),
Au(t) = | |(ds (1) cosy —de (1) sing).

For FDSES, replaced the discrete eigenvalue ., Im(u) with
we obtain the exact solutions for initial data with the frequency
<N/2.

2wk
A, “T
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6.11 Stability of approximations for time- dependent problems

The time-dependent difference equation (6.23) using the MN-order
column-vector v(¢) with the elements v}'(¢),j = 1,N,m = 1,M in the

form
v(t) = (—KQ)A+PRA v (t) + f(1) (6.24)

serves as an approximation to the differential problem (6.20), in the
sence that any smooth solution u(¢) satisfies the approximation (6.23)
modulo a small local truncation error ¥ (h,t) = O(h*") :

40 _ (R@Aule) + (PR BW(r) +£6) + ¥(hr). (625

where MN- order matrices

ki1A - ki pmA
I?®A: . ce

p11AY -+ py yA°
,P®A0: ,

kymaA - kypmA pm1AY - py A

are Kronecker tensor product, u(t),u(0), f(z) are MN column-vectors

with the elements

(1), (0), f7,m = T,M, j = T,N.

Matrices can be defined with the representation A = WDW* A% =
WDW*, and solved numerically with the Matlab operator “kron”.

In order to link the local order of accuracy with he desired global con-
vergence rate of the approximation, one has to verify stability. We say
that approximation (6.23) is stable, if for all sufficiently small h the

following estimate holds
||eXp(Bt)H Sth,OSISIf,C[f, (626)

where B= —K®A +PQ®A,C;, > 0— is constant.

If eigenvalues of matrices K,P are A;(K) > 0,A4(P),s = 1,M then
exsist the transformation of M-order matrices Wg, Wp, and the repre-
sentation K = WxDgW, !, P = WpDpW, !,

where Dx = diag(As(K)),Dp = diag(As(P))

are the diagonal matrices. From properties of Kroneker tensor product
follows (W* =W~1!):

the eigenvalues A (B) of matrix B are



6.12 System of nonlinear parabolic type equations 233

— 1 As(K) + pA(P),k = T,N,s = T,M with the Re(A(B)) < 0 and
the system of ODEs is stable.
6.12 System of nonlinear parabolic type equations

We consider the nonlinear system of M- heat transfer equation with
periodical BCs in the following form:

{aaTtm: M (%(k M)"‘Pmsm)‘f'fm&m( Tn),
Tn(x,0) = m()xG(OL) =1,M
(6.27)

or

X _0? p X
ar{;t,z) _z? glgcg 1)) +Po7gz(§)(c 1)) (T (),

(6.28)
where g1(7T),g2(T),g3(T) are the M-order column-vectors with the
elements
gl,m(Tm)agZ,m(Tm)ag3,m(Tm);m - 13M7
We have following discrete form

= (—KQA)g1(u(t))+ (PRA) g (u(t)) + fg3(u(t)). (6.29)

An example for M = 2 we consider nonlinear power functions
g1 =T% g ,=T%, g, =TP g, =TP,
31 =T",g32=T".

1) fo=0= Bl = ﬁz = 3, Nn=m= 2 (see FigS. 6.13, 6.14 with
ty = 10 , we have stationary symmetric, periodic oscilations in the
space ), then for the maximal and minimal values of solutions ul, u?
(the minimal value is equal to maximal with oposite sign) depening
on t and the values of the solutions depening on x by # = 7, we have:
N =40:
0.17752;0.10843(0(h?)),0.17755;0.10847(0(h*)),
0.17686;0.10791(0(h°)),
0.17715;0.10822(0(h?)),0.17715;0.10822(F DSES),
if N=80, then for FDSES and O(h®)) : 0.17723; 0.10827,
but for O(h?)) 0.17732; 0.10832.
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2) In the next Figs. 6.15, 6.16 for y; = y» = 0,7y = 0.1( solutions
tends fast to stationary ).

3) In the next Figs. 6.17-6.20 for y; = » = 2,7, = 10,L = 2;3;4
(for L=3 the solutions tends slowly to stationary only by ¢, = 20.)

4) For different value of oy = 3,00 =581 = =3, n=1 =
2,ty = 10,L = 2 results are represented in Fig. 6.21.
If oy =5, 0p = 3, then we have Fig. 6.22. In this case need be changed
the following Matlab operators:
PDSper2- additions

[T1,Y1l]=0del5s (@SIST1, [0, Tb],yy0,options,Al,A2,K,P,F2,N);
function F=SIST1(t,yy,Al,A2,K,P,F1,N)
F=-kron (K,Al) *[yy(1:N)."5; yy(N+1:2%N)."3]+. . .
kron(P,A2) *x[yy(1:N)."3; yy(N+1:2xN)."3]+...
Fl.x[yy(1:N)."2; yy(N+1:2xN)."2];

[T N O SR

In Figs. 6.23, 6.24 are represented the results by oy =5, op = 3 for
matrix 0.1K with the eigenvalues 0.1,0.5. We can see the oscilations
in time (N = 40,77 = 5).
We obtain following maximal values depending on O(th) ,n=1,2,34
and for FDSES:
1.5461;0.9288(0(h?)),1.4914;0.8911(0(h*)),
1.5061;0.8969(0(h%)),1.4919;0.8894(0(h®)),1.5081;0.8945(F DSES).

5) Interesing results are obtained if K = 0,8; = 8, = 1 and when
the functions g31(7),g32(T) are the trigonometric functions sin(7’)
or cos(T).

For g3 1(T) = g32(T) =sin(T),N = 80,L =ty = 1 we have
following maximal and minimal values of solution depending on the
order of approximations:

2.71,—-1.96;2.14, —1.28(0(h?)),2.40,—1.93;1.76, —1.33(O(h*)),
2.39,-1.92;1.73, —1.34(0(h%)),

2.38,—-1.88;1.73, —1.32(0(h®)),2.38,—1.86;1.72, —1.32(FDSES)
and (O(h?°)) If N = 20 then for FDSES we have:
2.37,—1.83;1.73,—1.31.
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Vv1(Tb), v2(Tb),err1=1.5333¢-001 err2=1.3014e-001

Fig. 6.13 Solutions by ¢ty = 10,N = 40 de-
pending on x

Vi(Tb), v2(Tb),vM1=6.0010¢-001 vm1=-6.0010e-001 vM2=4.5670e-001 vm2=-4.5670e~0(
08

0.6

04 Y s

Fig. 6.15 Solutions by ¢y = 0.1, N = 40 de-
pending on x

V1(Tb), v2(Tb),vM1=1.7753e-001,vm1=~1.7753e-001,vM2=1.0831e-001,vm2=-1.0831e-0(
0.2

-0.05
0.1 o - -~

-0.15

Fig. 6.17 Solutions by = 10,N = 80,L =2
depending on x

Max-min values depending on t,N= 80

—Mvi
—mvi
—_—2
——m2

Mm
°

235

Fig. 6.14 Maximal and minimal values de-

pending on t

Max-min values depending on tN= 40

Mm
°

— mv2

Fig. 6.16 Maximal and minimal values de-

pending on t

V1(Tb), v2(Tb),vM1=1.7835e-001,vm1=-1.7835e-001,yM2=1.0875¢~001,ym2=~1.0875e-0(
02

-0.05

-0.1

-0.15

Fig. 6.18 Solutions by 1 = 10,N = 80,L =4

depending on x
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V1(Tb), v2(Tb),vM1=5.3293e-001,vm1=-5.3293e~001,vM2=3.3666e-001,vym2=-3.3666e-0(
06

Fig. 6.19 Solutions by f; = 20,N = 80,L =3
depending on x

VA(Tb), v2(Tb),vM1=1.3365¢-001 vm1=-1.3365e-001 yM2=1.1217e-001 ym2=~1.1217e-0
0.15

Fig. 6.21 Solutions by t; = 10,N = 80,L =
2,00 = 3;5 depending on x

V1(Tb), v2(Tb),vM1=1.4919€+000,vm1=~1.4919e+000,vM2=8.8937e-001,vm2=-8.8937e-0(
15

1
= RN 5
) Y K4
05 A R
[ [
V1
> 0 V!
| v
i
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S ’
... %
El
-15
0 05 1 15 2 25 3

Fig. 6.23 Solutions by ty = 5,N = 40,L =
3, = 5;3 depending on x

Max-min values depending on t,N= 80

—_—Mvi

08 —mvt

—me2||

06 —me2
04
0.2
£ o

Fig. 6.20 Maximal and minimal values de-
pending on t

V1(Tb), v2(Th),vM1=3.6982e-001 vm1=-3.6982e-001,vM2=1.54380-001 ym2=~1.5438e-0(
0.4

Fig. 6.22 Solutions by t; = 10,N = 80,L =
2,0 = 5;3 depending on x

Max-min values depending on t,N= 40

2
1
0.5
Myt
g mvt
=0 M2
—me
05
ANSAS A
-1
-15 m/\/\/\/\/\;
2
[ 1 2 3 4 5

Fig. 6.24 Maximal and minimal values de-
pendingontby L =3



Chapter 7
Poisson equation: H. Kalis, I. Kangro, 2015 [83]

The solutions of the linear boundary value problem for Poisson equa-
tions are obtained analytically and numerically. Using the method of
lines (lines are parallel to y axis) for periodical BC we define the FD-
SES, where the finite difference matrix A is represented in the form
form A = WDW*

(W,D is the matrixes of finite difference eigenvectors and eigenval-
ues corespondently, W* is the conjugate matrix and the elements of
diagonal matrix D are replaced with the first eigenvalues from the dif-
ferential operator.

7.1 The mathematical model

We consider the boundary value problem for Poisson equation with
the periodical BCs in the x direction:

PTLN § PTN — f(x,y),x € (0,L).y € (0.H),
7(0.y) =T (L), 5 = 5y € (0. H), b
T(x,0) =T;(x),T(x,H) = T(x),x € (0,L),

where 7;(x), T, (x) are given BC function in the y direction. Similarly
we can consider the problem with the periodical BCs in the both x and
y directions:

237
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‘92( )_|_ a)(c ):f(xy)xe(OL)yE(OH)a

T<o7y> =T(L,y), Z{0) = Iy ¢ (0, 1), (7.2)
T(x,0) =T (x,H), 30 = 2TEH x e (0,L).

This problem has unique solutions by f(fl fOL f(x,y)dxdy =0,

T (x0,y0) = To, where xo € [0,L],yo € [0,H], Ty are fixed constants.
We consider uniform grid in the space x; = jh, j = 0,N,Nh =L, where
N is even number.

Using the finite differences of second order approximation for partial
derivatives of second order respect to x we obtain the boundary value
problem for system of ordinary differential equations (ODEs) in the
following matrix form

U(y)—AU(y) = F(y),U(0) =U;,U(H) = U, (7.3)

U(y)—AU(y) =F(y),U(0) =U(H),U(0) = U(H), (7.4)
where A is the 3-diagonal circulant matrix of N order,
A= hiz[Z, —1,0,0,...,—1] (see chapter 1), U(y),U(y),F(y),U;,U, are
the column vectors of N order with the elements u;(y) ~ T'(x},y)),

iij(y) ~ x”y Siy) = f(xj,9),)
uj(O)—Tl(x]),u](H)—Tr(xj),j:0,N. o

The corresponding discrete spectral problem Aw" = u,w",n=1,N
with circulant matrix have following solution:

wh = /1/N(w},wj, ...,w,’(,)T,
i (7.5)

= };12 sin?(mnh/L),

where w/ = ¢,(x;) = exp(2minx;/L), j = I,N,i = \/—1 are the com-
ponents of orthonormed eigenvector w". The eigenvalues of matrix A
for different order of approximation O(hk ),k > 2 are (see chapterl):
1) k=4, h?

_ 54 _1 4
A=[-33, 1270 ,0,— 1273]7
h2, = —4(sin’ (Jtnh/L) sm4(7rnh/L)),
2) k=6,h?
_ 7493 3 1 133
A=1=12~50090: 0050, ~252);
W, = —4(sin2(7mh/L) + tsin*(wnh/L) + % sin®(nnh/L)), 3) k =

8, h?
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!

A= 8 1.8 _Lo0....0—= 5 —1
) 720507 503150 56000 10T T 5607 3150 5
h*, = —4(sin“(wnh/L) + 5 sin” (Tnh/L)+
5 sin®(nnh/L) + 3= sin®(wnh/L)),
Therefore the matrix A can be represented in form A = WDW* | where
the column of the matrix W and the diagonal matrix D contains N or-
thonormed eigenvectors w” and eigenvalues ,,n = 1,N (W*W = E,
Wl =w~).
The solution of the spectral problem for differential equations

oo

—w"(x) = Aw(x),x € (0,L),w(0) = w(L),w'(0) = w'(L),

is in following form:
wi(x) = L' ¢, (x) = L~ 'exp(2minx/L), A, = (2mn/L)*,n >0 .

7.2 The analytical solution

We can consider the analytical solutions of the system of ODEs
(7.3,7.4) using the spectral representation of matrix A = WDW* .
From transformation V.= W*U (U = WV) follows the seperate sys-
tem of ODEs

{V@Q—DV@%=G@%V®)=W”MJ“H>:“”U” (7.6)

V(y) =DV (y) = G(y),V(0) =V(H),V(0) = V(H),

where V(y),V(y),V(0),V(H),V(0),V(H),G(y) = W*F (y)
are the column-vectors of N order with elements

Ve (), ¥ (), (0), Vi (H), v (0), v (H), gk ()k = T,N.
The solution of the system (7.6) is the sum of two solutions function
(with homogenous equation and with homogenous BC)

{ vk(y) = (sinh(KkH))_l [Vk(()) sinh(Kk (H — y)) + Vi (H) sinh(Kky)] —
Jo! Gr(&.)8k(&)dE,

(7.7)
where K = /llk, Gr(&,) is the Green function in following way:

sinh(Kk(H—y)) sinh(x; &
Gk(é ) y) = { sinh( K/f](clfllghﬁ()gkgn)h( Ky

Ky Sinh(KkH)

L o<E<y,
L y<E&<H.
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For uy = 0 from 7.7) follows

() = we(0) + 3 (o (H) = v (0) = [ Gv(E.y)an(E)aE,
0
where e
_ ) T, 0<E <y,
Gn(S.y) = { LSNP

The general solution is following

vi(y) = Cysinh(kyy) + By cosh(iqy) + Kik /gk(ﬁ) sinh(Kx(y — §))d¢&,
0

where Ck,Bk are constants. Using the BCs we have
Cr = K'ksmh 0 5’<kH fo 8k(&)sinh(x, (& —0.5H))dS,

By = Kksmh () SiH) fo k(&) cosh(x, (& —0.5H))d§.
In this case the analytical solution (7.7) is

wly) = ~0.5(kcsinh(0.55,1) ™! [ GuEg(E)dE, (1.9

where Gi(&,y) is the Green function in following way:

G (é y): COSh(Kk(H/z_y—{_g))? Oéégyv
K cosh(k(H/2—&+y)),y <& <H.
We can used also the Fourier method for solving (7.1) in the form
T(x,y) = Yrez vi(t)wi(x), where wy(x) are the orthonormed eigen-
functions, vi(y) is the solution (7.7),with v(0) = (T;,wy),vi(H) =
(T, wp).

The solution we can also obtained in real form:

T (x,3) = i (axe (v) cos 27 + 2 () sin 221 fo—3<y>.,
F(x,y) = L1 (bre () cos 27 + by (y) sin 272’“)+ ocz(y)7
y)e

be(y) = 2 [ f(&,¥) cos 2’;" dé,bkm—Lfo F(&,y)sinZeqe,
(7.9)
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where ay.(y),ars(yv) are the corresponding solutions of (7.7, 7.8) by
a1e(0) = 2 5 TH(§) cos 2dE, ay(0) = 7 fy T1(&) sin 2 d,

aie(H) = § [y T(8) cos P[2dE, ays(H) = } Jy Tr(&) sin ZF=d8,
8k(y) = bre(y) or bys(y)-

Similarly we can obtained the solution of the discrete problem also
in the real form:

N 2wk 2k .
uj(y) = lt 21(akc()’)005ﬂ+aks( T =)+ aoz(Y)7

)sin
1100 = 522, (rely) cos 25+ by (y)sin 288) 1 ) (7.10)

bre(y) = NZNfJ(Y)COSm;{]X],bks( )= 2%V fi(y)sin 224,

where ag.(y),ars(y) are the correspondmg solutions of (7.7, 7.8) by

7k j k
are(0) = 3 L Ti(xj) cos 2L, ay(0) = an@»mn%%

2wk 2wk
akc(H) = ]zvzllvTr(xj)COS 7]er’ aks<H) ZNT (x])sm 7;7]7

04(5) = 1c) or b, T = T ot B
(for FDSES i are replaced w1th lk)

For the FDSES the matrix A is represented in the form form
A =WDW?™ and the diagonal matrix D contain the first N eigenvalues

dy = A, k=1,N from the differential operator (—g—;) in following
way:

1)d), = A for k = 1,N,, where N, = N/2.

2)dk = lN—k for k = Nz,N.

If d;, = uy, then we have the method of FDS.

The FDSES method is more stable as the method of finite difference
by approximation with central difference (FDS), because the eigen-
values are larger dy > L.

7.3 The analytical solution in the matrix form

For homogenous equations (F = 0) (7.3) we can obtain the solution
in the form

Uy (y) = sinh~ (A H)[sinh(A,y)U, +sinh(A | (H — y))U}],

where A| = V/A.
For homogenous BC (U; = U, = 0) the solution is

Ua(y) =~ Jo' G(&.y)F(§)dE,
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where

[ sinh(A{(H —y))sinh(A;&) (A1 sinh(AH)) ™!,
GUE)={ S B b A b))

is Green matrix-function.

The solution of the problem (7.3) is U(y) = U,(y) + Uz(y). Mul-
tiply this solution left with W—! = W*, and using the expressions
A=WDW* f(A) =W f(D)W*W*U;=V(0),W*U,=V(H),W*F =
G(y) (f is every function) we obtain the column-vector V(y) with
components (7.7). If det(A) = det(A) = 0 then we can not direct ob-
tained the solution of the matrix form.

For periodical BCs are given also in the y direction, then from (7.4)
we have the following vector-solution

H
U(y) = —0.5A; 'sinh ™1 (0.54,H) / G(E,y)F(E)dE,
0

where

_ fcosh(Aj(H/2—y+&)),0<&<
G(g’y)_{cosh(Ai(H/Z—Fi—g))v)’SéSH

For uy = 0 from 7.7) follows

() = (0)+ 37 (v (H) = vv(0)) = [ Gu(E.)gn(E)de.
0
where (Hop)E
7o, 08 <y,
Gn(E,y) = { (H;{é)y’ygfgzl

For uy = 0 from 7.8) follows vy (y) = 0.
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7.4 Some examples and numerical results

7.4.1 The boundary value problem with the periodical BC in one
direction

For numerical calculation we consider the boundary value problem
(7.)withH=L=1,f=0,T;=0,T,(x) =sinh(27) cos(27x), T (x,y) =
sinh(2my) cos(27x).

Using the Fourier method we obtain v;(0) = 0,v(H) = 0 for k # +1,

viy(H) =027y (y) = S2B) 7 (x,y) = cos(27x) sinh(27y).

We have following MATLAB m.file PuasPer:

1 %system ODE U_yy-AU=f with periodical BC

2 %t=Tb,u(x,y)=cos (2 pi x)sinh(2 pi y), £f=0,N-even

3 function PuasPer (N, M)

4 N1=N+1; H=1;L=1;x=linspace(0,L,N1)';y=linspace(0,H,M);
5 h=L/N;N2=N-1;x=x(2:N1);

¢ %A2=A2-diag(ones(N2,1),1)-diag(ones(N2,1),-1)+...

7 %2xdiag(ones(N,1));

s %$A2(1,N)=-1; A2(N,1)=-1; A2=A2/h"2; %matrix A, control
9 NT=(1l:N)'/L;

10 lk=4/h"2x (sin (pi*h*NT))."2; %0(h"2)

11 1lk=4/h"2% ((sin (pi*h*NT)) . 2+1/3% (sin (pi*h*NT)) ."4);%0(h"4)
2 1k=4/h"2% ((sin (pi*h*NT)) . 2+1/3 (sin (pi*h*NT)) . " 4+. ..
13 8/45% (sin (pi*h*NT)) ."6);%0(h"6)

14 1lk=4/h"2% ((sin (pi*h*NT)) . "2+1/3* (sin (pi*xh*NT)) . " 4+. ..
15 8/45% (sin (pi*h*NT)) . " 6+4/35% (sin (pi*h*NT))."8);%0(h"8)
16 Ck=sqgrt (h/L);

17 1k0=(2% (1:N) '*xpi/L)."2;

1s d=1lk; S%FDS

19 %$NH=N/2; d(1:NH)=1kO0(1:NH);

20 $%$d(NH:N2)=1kO(NH:-1:1);d(N)=0; $FDSES

21 W=Ck*exp (2*%pi%ix (1:N) '+x'/L)"';

2 Wl=Ck*exp (-2*pixix (1:N)'*x'/L)"';

23 A2=Wxdiag(d) *W1l; %FDS or FDSES

24 yr=sinh (2xpixL) xcos (2*xpi*x);

5 yl=zeros(N,1l); % bound-cond

26 P=Wlxyl;Pl=zeros (M,N);PO=Wl*yr;

27 for k=1:N2

28 b=sqrt (d(k)); %FDS or FDSES

9 P1l(:,k)=P(k)+*cosh(bxy')+ (PO (k)-P(k)*cosh(bxH))/...

30 sinh(bxH) *sinh(b*y');

31 end

2 P1(:,N)=P(N)+ (PO (N)-P(N))=*y'/H;

33 P2=(WxP1')"';

34 prec=cos (2xpixx) *sinh (2xpixy) ;% exact

33 Mal=max (max (abs (P2-prec'))); $max error an.
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36 Xl=ones(M,1l)*x';Yl=y'*ones(1l,N);

37 figure,plot (y',max(abs(P2(:,1:N)'-prec)), 'k*')% max error on y
33 title(sprintf('err. Max-sol.an.on y, Max=%9.7f ', Mal))

9 xlabel('\ity'), ylabel('\itu')

4 figure, surfc(X1l,Y1l,abs(P2-prec'))% error anl.

41 colorbar

42 xlabel('x'), ylabel('y'), zlabel('u')

4 title(sprintf('err. anal.,yNr.=%4.1f, max=%9.7f',M,Mal))

Using the operator PuasPer(40,10) we obtan maximal errors:
0.0956 (FDS-O(h?)),(see Fig. 7.1)
0.00031 (FDS- O(h*)), 1.2 1076 (FDS -0(h®)), 5. 10~° (FDS-0(h®)),
6.10~12 (FDSES) (see Fig. 7.2).
By N = M = 10 we obtain 3.10~* (FDS-O(h%)), 10~'? (FDSES).

err. anal.,yNr.=10.0,max=0.0955957 err. anal.,yNr.=10.0,max=0.0000000 x107?

Fig. 7.1 Error with FDS by N = 40,M =  Fig. 7.2 Error with FDSES by N = 40,M =
10,0(h?) 10

7.4.2 The matrix- solution of boundary value problem with the
periodical BC in two direction

Using the periodical BCs in both directions with right sides function
f(x,y) = —8m?cos(27x) cos(2my) by L = H = 1 we have the exact
solution 7 (x,y) = cos(27x) cos(2my).

From the approximated solution follows that U (y) = 87> cos(27y) (A3 +

AT’E )_] g,

where E is the unit matrix of the N order,

g = (cos(27x1),cos(27x3), - - - ,cos(2mxy))T is the column-vector of
the N order.

From (7.8) follows that
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gr(&) = —8%2% yzl exp(—27jxi)cos(2mx ;) = —8%24 cos(2m&)
fork=1andk=N—1.

For other numbers of k we have g;(&) = 0. We use the integrals

[ cosh(a& + b)cos(cE)dE =

i sinh(ag +b)cos(cS) + 5 cosh(ag +b) sin(cE),

where a = + Kk, b=H/2+y,c=2m.

Then

vi(y) =vy_1 = 471>/ Ncos(2my)/ (k> +4m?), where k = k| = Ky_1.
Therefore the components of the approximated solution U are

uj(y) = ﬁvl (v)(exp(2mx;) +exp(2mx;(N—1))) = Klﬁ”:nz cos(2my)cos(2mx;).
We have following MATLAB m.file ”’puas4”(N=M) for matrix solu-

tion:

1 % u_yy= —u_xx+f, period. BC in x and y direc.

2 %u(x,y)=cos (2px)cos (2py) - exact sol.

3 function puas4 (N)

4 N2=N-1;N1=N+1;h=1/N;L=1;H=1;

s x=linspace(0,L,N+1) ;NT=(1:N)'/L;

¢ y=linspace(0,H,N+1);

7 x=x(2:N1),;y=y(2:N1)"';

s lk=4/h"2x% (sin (pi*h*NT))."2; %0(h"2)

9 1lk=4/h"2% ((sin(pi*h*NT)) . 2+1/3* (sin (pi*h*NT))."4);%0(h"4)
10 lk=4/h"2% ((sin(pi*h*NT))."2+1/3% (sin (pi*xh*NT)) . " 4+. ..
11 8/45% (sin (pi*h#NT)) ."6);%0(h"6)

12 1lk=4/h"2% ((sin (pi*h*NT)) . "2+1/3% (sin (pi*xh*NT)) . " 4+. ..
13 8/45% (sin (pi*xh*NT)) . " 6+4/35% (sin (pi*h*NT))."8);%0(h"8)
14 Ck=sqrt (h/L);

15 1k0=(2% (1:N) '*pi/L)."2; %exact eig-val.

16 d=1k; S%FDS

17 %NH=N/2; d(1:NH)=1kO0 (1:NH);% FDSES

18 $d(NH:N2)=1kO(NH:-1:1);d(N)=0; $FDSES

19 W=Ck*exp (2+xpi*ix (1:N) '*x/L)"';

20 Wl=Ckx*exp (—-2*pixix (1:N)'+x/L)"';

21 Bl=Wxdiag(—-d) *W1l; %FDS or FDSES

2 %$Bl=zeros (N,N);

23 %$Bl=Bl-1/12xdiag (ones (N2-1,1),2)+4/3*diag(ones(N2,1),1) ...
2 %-1/12xdiag(ones (N2-1,1),-2)+.

»5 %4/3xdiag(ones(N2,1),-1)-5/2*diag(ones(N,1));

% $%Bl(1,N)=4/3; B1(N,1)=4/3;B1(1,N2)=-1/12; B1(2,N)=-1/12;
27 %B1l(N,2)=-1/12; B1(N2,1)=-1/12;% control O(h"4)

23 %Bl=Bl-2xdiag(ones(N,1))+diag(ones(N2,1),-1)+...

29 % diag(ones(N2,1),1);

3 %$Bl(1,N)=1;B1(N,1)=1; %control O(h"2)

31 %$B1=Bl/(h"2);

2 el=eye(N);

33 B2=sqrtm(-Bl) ;B3=inv (B2 2+4x*pi~2xel);

34 B=8xpi”2xB3;prec=cos (2*pi*x') xcos (2xpix*y"');
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for iy=1:N

yl=y(iy,1);

g0=cos (2*pi*x) *cos (2xpixyl) ;
u(:,iy)=Bx*g0';

end

Amax=max (max (abs (u'-prec')));
X=ones (N, 1) * x; Y=yxones(l,6N);
surfc(X,Y,abs (u'-prec'))

colormap (gray) ,

colorbar

xlabel('x'"'), ylabel('y'), zlabel('u')
view (135, 45)

title(sprintf ('Period.BC in both direc. FDS O(h"2), .
h=%4.2f, Error=%8.6e',h,Amax))

Using the operator puas4(10)we obtan following maximal errors:
0.016502 (FDS-O(h?)), (see Fig. 7.3);
0.000837 (FDS- O(h*)), (see Fig. 7.4); 52. 10~% (FDS -O(h®)), (see
Fig. 7.5);
4.107% (FDS-0O(h?)),(see Fig. 7.6); 5.10~'> (FDSES) (see Fig. 7.7).
In the Fig. 7.8 is represented the exact solution.

Period.BC in both direc. FDS O(t),h=0.10, Error=1.650230e-002 4 10 Period.BC in both direc. FDS O(h*),h=0.10, Error=8.365931e-004 10

Fig. 7.3 Error with FDS by N = 10,0(h?) Fig. 7.4 Error with FDS by N = 10,0(h*)
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Period.BC in both direc. FDS O(H),h=0.10, Error=5.166927-005  x 105 Period.BC in both direc. FDS O(H).n=0.10, Error=3.524949e-006 4 19

Fig. 7.5 Error with FDS by N = 10, 0(h%) Fig. 7.6 Error with FDS by N = 10,0(h®)

Period.BC in both direc. FDSES,h=0.10, Error=5.336752¢-015 X107 Period.BC in both direc. FDS O(),h=0.10, Error=1.650230e-002

Fig. 7.7 Error with FDSES by N = 10 Fig. 7.8 Exact solution by N = 10

Using ihe MATLAB operators

Bl=zeros (N,N);
Bl=Bl-1/12xdiag(ones(N2-1,1),2)+4/3xdiag(ones(N2,1),1) ...
-1/12xdiag(ones (N2-1,1) ,-2)+.
4/3xdiag(ones(N2,1),-1)-5/2xdiag(ones(N,1));

B1(1,N)=4/3; B1(N,1)=4/3;B1(1,N2)=-1/12; B1(2,N)=-1/12;
B1(N,2)=-1/12; B1(N2,1)=-1/12;% control O(h"4)
Bl=Bl-2xdiag(ones (N, 1)) +diag(ones(N2,1),-1)+...
diag(ones(N2,1),1);

B1(1,N)=1;B1(N,1)=1; %control O(h"2)

10 Bl=Bl/(h"2);

[ T S SR SR

in the m.file puas4 for approximation orders O(h?),0(h*) the re-
sults are remained.
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7.4.3 The analytical solution of boundary value problem with the
periodical BC in two direction

In the m.file PuasPer2 is used the analytical solution (7.8) with the
quadrature trapezoid formula for calculation of integrals

o Fi(yj.0)dt = 5 (Fi(y;,0)+ F1 (v,95)) + i Ty Fi (9, ym), j =1, M,
T Ba(yjt)dt = B-(F) (v, H) + Fa (v, ) + I X B (V7 9m),
J=TM=T1, [} Fy(yj,t)dt =0,
where F (y,t) = cosh(k (0.5« H —y+1))gk(t), F2(y,t) = cosh(x (0.5
H+y—1))gk(t),yj = j*hi,ln =H/M

1 %$system ODE U_yy-AU=f with periodical BC in 2 direct, .an. sol.
2 %u(x,y)=cos(2 pi x)cos(2 pi y),£f=-8 \pi“2 u(x,y),N-even
3 function PuasPer2 (N, M)

4 N1=N+1; M1=M+1;H=1;L=1;x=linspace(0,L,N1)"';

5 y=linspace(0,H,M1);

¢ h=L/N;N2=N-1;M2=M-1;x=x(2:N1);y=y(2:M1) ';hl=H/M;

7 %$A2=A2-diag(ones(N2,1),1)-diag(ones(N2,1),-1)+...

8 %$2xdiag(ones(N,1));

o %A2(1,N)=-1; A2(N,1)=-1; A2=A2/h"2; S%matrix A,0(h"2)

1o NT=(1:N)'/L;

11 1lk=4/h"2x% (sin(pi*h*NT)) ."2; %0(h"2)

12 1k=4/h"2x ( (sin (pi*h*NT)) . 2+1/3* (sin (pixh*NT)) ."4); %0 (h"4)
13 1lk=4/h"2% ((sin (pi*h*NT)) . 2+1/3% (sin (pi*h*NT)) . 4+. ..

14 8/45% (sin (pi+h*NT))."6);%0(h"6)

15 1lk=4/h"2x ((sin (pi*h*NT)) . 2+1/3% (sin (pi*h*NT)) . 4+. ..

16 8/45% (sin (pi*hxNT)) . " 6+4/35% (sin (pi*h*NT))."8);%0(h"8)
17 Ck=sqrt (h/L);

18 1k0=(2% (1:N) '*pi/L)."2;

19 d=1lk; %FDS

0 NH=N/2; d(1:NH)=1kO0 (1:NH);

21 d(NH:N2)=1kO(NH:-1:1);d(N)=0; $FDSES

2 W=Ck*exp (2*pi*ix (1:N) '*x'/L)"';

23 Wl=Ck*exp (-2*pixix (1:N)'*x'/L)"';

24 A2=Wxdiag(d)*W1l; %FDS or FDSES

5 £=—8%pi~2%xcos (2xpi*y) *cos (2xpixx') ;g=W1lxf';

%6 gk=zeros(M,1);

27 Pl=zeros (M,N);

% for k=1:N

2 gk(:)=g(k,:);

30 b=sqrt (d(k)); %FDS or FDSES
31 for j=1:M

2 if j==M v2(j)=0;end

33 s1l=0; for jl=1:j-1

34 sl=sl+F1(j*hl, jlxhl,b,H)*gk(jl); end ;

35 v1(j)=0.5xhlx (F1(jxhl,0,b,H)*gk (M)+F1(j*xhl, jxhl,b, H) xgk(j)) .
36 +hlxsl;

37 s2=0; for jl=j+1:M-1
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33 s2=s2+F2 (jxhl, jl«xhl,b,H) *gk(jl); end

39 if jM

40 v2(j)=0.5xhl* (F2(j*hl,H,b,H)*gk (M)+F2 (jxhl, jxhl,b, H) xgk(j)) .
41 +hl*s2;end

2 if k »+ N P1(j,k)=-0.5 /(b*sinh(0.5*H*b))*(v1l(j)+v2(]j));end
43 if k==N P1(j,k)=0; end

44 end; end

45 P2=(WxP1l')';

4 P2=P2-P2(M,N)+1;

47 prec=cos (2xpixy) *xcos (2xpi*x');im =max (max (abs (imag(P2))))

4 Mal=max (max (abs (P2-prec))); $max error an.

49 Xl=ones (M, 1) *x';Yl=yxones(1,N);

5o figure,plot (y,max(abs(P2(:,1:N) '-prec')), 'k*')% max error on y
51 title(sprintf('err. Max-sol.an.on y, Max=%9.7f ',6Mal))

52 xlabel('\ity'), ylabel('\itu')

53 figure, surfc(X1l,Y1l,abs(P2-prec))% error anl.

4 colorbar

55 xlabel('x'), ylabel('y'), zlabel('u')

s6 title(sprintf('err. anal.,yNr.=%4.1f, max=%9.7f',M,Mal))

57 function £=F1l(y,t,b,H)

ss f=cosh(b*x(0.5xH -y +t));

s9 function f=F2(y,t,b,H)

60 f=cosh(b*x(0.5xH +y -t));

Using the operator PuaPer2(10,200)we obtain following maximal
errors :
0.0333 (FDS-0(h?)), 0.0020 (FDS- O(h*)), 0.00043 (FDS -O(h°)),
0.00034 (FDS-0O(h?)), 0.00033 (FDSES).
For N = 10, FDS — O(h?) and diferent M follows: 0.0351 (M=80),
0.0335 (M=160), 0.0333 (M=200).

7.4.4 The Kronecker-tensor solution of the problem with the
periodical BC in two direction

In the m.file PuasTen?2 is used the Kroneker -tensor method for the
solution (7.2) .We consider also uniform grid in the y direction y,, =
mhy,m=0,M,Mh; = H, where M is even number.
Using the finite differences of second order approximation for partial
derivatives of second order respect to x,y we obtain the system of
linear algebraical equations of the NxM order in the following matrix
form

Au=—g, (7.11)

where A = E» ® A + A, ® Eq is the block wise matrix of the N.M
order determined with the Kronecker tensor product in following form
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C = B' ® B?, where B' B? are the square matrices correspondly of
N, M orders and the matrix C of N.M order is following

1 p2 pl p2 pl p2 1 2 pl 2 p1 p2
C _ bz)lB bz‘zB b273B cee b27N_zB b27N_]B b27NB
by (B by ,B by 3B ... by y_,B* by B by \B?
A1,A, are circulant matrices A} = h—12[2 —-10...00 — 1],
Ay = hiz[z —10...00 —1];Ey, E; are the unit matrices with the N, M

1

order correspondly, u,g are the column-vectors of N.M order with
following elements L
Ujm =~ T(Xj,Ym)agj,m - f(xjaym)a.] = 17Nam = lvMa
Using the matrices spectral representation Ay = WD W;",k = 1;2 and
the properties of Kronecker product
AC®BD = (A®B)(C®D),
(AB) '=A"1@ B! we get

A= (W2®W1)(E2 KD+ Dy ®E1)(W2* ®W1*)
andu=—-A"lg, (Wk_1 =W, (W)~ = W) where
Al = (W@ W) (E; @Dy 4+ Dy @ E) Y (W5 @ W)

For the solution of the problem Au = g analytically we use the trans-
formation

W u=voru=Wy, where W =W, @ W, W* = W, @ W}.

Then Dv = —W*g or djjmvj,m = —(W*g)jm,j = I,_N,m = 1,_]\4,
where D = E; ® D1+ Dy, QEj.

For j=N,M = M we have dy » = 0, the value vy y is indeterminable
and we can take vy » = 0. The solution is in the form u = Wv.

%$system ODE U_yy-AU=f with periodical BC in 2 direct,
$u(x,y)=cos (2 pi x)cos(2 pi y),£f=-8 \pi“"2 u(x,y),N,M-even
%$Kroneker-Tensor algorithm

function PuasTen2 (N, M)

N1=N+1; M1=M+1;H=1;L=1;x=linspace(0,L,N1)';y=linspace(0,H,M1);
h=L/N;N2=N-1;M2=M-1; x=x(2:N1) ; y=y(2:M1) ';hl=H/M;

NM=N*M; NM2=NM-1;
$A2=A2-diag(ones(N2,1),1)-diag(ones(N2,1),-1)+...
%$2xdiag(ones(N,1));

© X u e w A W o =
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$A2 (1,N)=-1; A2(N,1)=-1; A2=A2/h"2; %$matrix A,0(h"2), control
NT=(1:N)'/L;MT=(1:M)'/H;

1k=4/h"2* (sin (pi*h*NT)) ."2; %0(h"2)

1k=4/h"2% ((sin (pi*h*NT)) . 2+1/3% (sin (pi*h*NT)) ."4) ;%0 (h"4)
1k=4/h"2* ((sin (pi*h*NT)) . "2+1/3% (sin (pi*h*NT)) . " 4+. ..
8/45% (sin (pi*h%NT)) ."6) ;%0 (h"6)

1k=4/h"2* ((sin (pi*h*NT)) . 2+1/3* (sin (pi*h*NT)) . " 4+. ..
8/45% (sin (pi*h%NT)) . “6+4/35% (sin (pi*h*NT)) ."8);%0(h"8
1k1=4/h1"2x (sin(pi*h1xMT)) . 2; %0(h1"2)

1k1=4/h1"2% ((sin (pi*h1*MT)) . "2+1/3% (sin (pi*h1*MT))."4);%0(h1"4
1k1=4/h1"2x ((sin (pi*h1*MT)) . "2+1/3% (sin (pi*hl1*MT)) . 4+. ..
8/45% (sin (pi*hlxMT)) ."6) ;%0 (h1"6)

1k1=4/h1"2x ((sin (pi*h1*MT)) . "2+1/3% (sin (pi*hl1*MT)) . 4+. ..
8/45% (sin (pi+*hl1+MT)) . " 6+4/35% (sin (pi*h1*MT))."8);%0(h1"8)
Ck=sqrt (h/L);

Ckl=sqrt (hl/H);

1k0=(2* (1:N) '*pi/L) ."2;

1k01= (2% (1:M) 'xpi/H) ."2;

d=1k; S%FDS-x

dl=1kl; S%FDS-y

NH=N/2; d(1:NH)=1kO0 (1:NH);
d(NH:N2)=1kO(NH:-1:1);d(N)=0; $FDSES—-x

MH=M/2; d1(1:MH)=1k01(1:MH);

dl (MH:M2)=1k01 (MH:-1:1) ;d1 (M)=0; $FDSES-y

W=Ck*exp (2xpixix (1:N) '*x'/L)"';

Wl=Ck*exp (—2+pi*i* (1:N) '*x'/L)"';
Wy=Ckl*exp (2«pi*ix* (1:M) 'xy'/H)"';

Wyl=Cklxexp (—2*pi*ix (1:M) '*xy'/H)";

Wxy=kron (Wy, W) ; Wxyl=kron (Wyl,6 Wl);

Al=Wxdiag(d) *W1l; %FDS or FDSES, control
A2=Wyxdiag(dl) *Wyl; %FDS or FDSES
f=8%pi~2%xcos (2xpi*y) xcos (2xpi*x');
f=reshape (f',NM, 1) ; g=Wxyl=*f;

dd=zeros (NM, 1) ; gg=zeros (NM, 1) ; P2=zeros (NM, 1) ;

for j=1:M jl=1+(j-1)=*N; j2=j1+N2; dd(jl:j2)=d(:)+d1l(j);end
for ji=1:NM2 gg(ji)=g(ji)/dd(ji); end

gg (NM) =0;

P2=Wxy*gg; P2=reshape (P2,N,M) ';

P2=P2-P2 (M,N) +1;

prec=cos (2xpixy) *cos (2*xpi*xx') ; im =max (max (abs (imag(P2))))
Mal=max (max (abs (P2-prec))); $max error an.

Xl=ones (M, 1) *x';Yl=y*ones (1,N);

figure,plot (y,max(abs(P2(:,1:N) '-prec')), 'kx')% max error on y
title(sprintf('err. Max-sol.an.on y, Max=%9.7f ', Mal))
xlabel ('\ity'), ylabel('\itu')

figure, surfc(X1l,Yl,abs(P2-prec))% error anl.

colorbar

xlabel('x'"), ylabel('y'), zlabel('u')

title(sprintf('err. anal.,yNr.=%4.1f,max=%9.7f',M,Mal))

Using the operator PuaTen2(10,10) we obtain by different order of

FDS and of FDSES following maximal errors:
DO(h?) : 0.06711 (FDS-O(h?)), 0.0347 (FDS- O(h*)), 0.0331 (FDS
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-0(h)),0.03301 (FDS-0(4%)), 0.03300 (FDSES),

2)0(ht) : 0.0347 (FDS-0(h?)), 0.00335 (FDS- O(h*)), 0.00178 (FDS
-0(1%)),0.00168 (FDS-0(h?)), 0.00167 (FDSES),

3)0(h%) : 0.0331 (FDS-O(h?)), 0.00178 (FDS- O(h*)), 0.00021 (FDS
-0(h%)),0.00011 (FDS-0(h?)), 0.00010 (FDSES),

4)0(h$) :0.03301 (FDS-O(h?)), 0.00168 (FDS- O(/*)), 0.00011 (FDS
-0(1®)),0.00001 (FDS-O(h?)), 7.10~% (FDSES),

5)FDSES: 0.03300 (FDS-0(h?)), 0.00167 (FDS- O(h*)), 0.00010
(FDS -0(h®)), 7.1076 (FDS-0O(h%)), 10~ 15 (FDSES).

For FDS — O(h*) + O(h?) and FDSES the errors are represented in
the Figs. 7.9, 7.10.

err. anal. yNr.=10.0,max=0.0671168 err. anal. yNr.=10.0,max=0.0000000 X107

Fig. 7.9 Error with FDS of O(h? + h%) byN = Fig. 7.10 Error with FDSES in (x,y) direction
M=10 by N=M =10

7.5 Equations with convections

We consider the boundary value problem for PDE with convection
terms and with the periodical BCs in the x direction:

2
+ay L5 4y 2 TG
97T (x.y)

a19—x=f(xa)’)éxe (O,L)a,ye (0,H), (7.12)
T(0,y) =T (Ly), "3 = e y € (0,H),
T(x,0) =T;(x),T(x,H) = T,(x),x € (0,L),

9°T (xy)
N2

where Tj(x),T,(x) are given BC function in the y direction and v >
0,a;,ay are constants.



7.5 Equations with convections 253

7.5.1 Convection in the y direction

If a; = 0 then the solution for Fourier series is in the real form (7.9),
where the coefficients ay.,ar; we can obtain from following seperate
system of ODEs:

dks(y) + ades(y) - Vﬂ'kaksoj) = bks(y)ak = 1,09 )

where A; = (%)2, are(0) = 2 [F Ti(E) cos %di,
ajs(0) = 2 J3 Ti(&) sin S dE, ay(H) = 2 i T(E) cos 2 dE
as(H) = 3 Jy T.(&) sin 2 4e,
aoc(0) = 2 [§ TH(E)dE aoc(H) = 2 [§ T(E)dE.
The solution of ODEs is
are(y) = exp(—azy/2)(sinh(kH)) ~!ag.(0) sinh (ki (H — y) )+
exp(axH /2)a(H) sinh(kiy) — o [o” Gi(&,)bre(§)dE],
ars(y) = exp(—any/2)(sinh(kxH)) ™ [axs (0) sinh (kg (H — y))+
exp(azH /2)ays(H) sinh(key) — 1 Jo' Gr(&,y)bis()dE],
(7.14)

where K, = \/a%/4+ Vi, Ko = az/2,Gi(&,y) is the Green function

in following way:
Gk(é,y) — { S?nh(Kk<H _y)) Si_nh(Kkg)a 0< 5 <
sinh(ky(H — &))sinh(kyy), y < & < H.
Similarly we can obtained the solution of the discrete problem also
in the real form (7.10, 7.14), where ki = /a3 /4 + vy, k= 1,N/2,
are the eigenvalues with different order of approximation in multi-

points stencil (for FDSES p, are replaced with A;). Foray; =0,v =1
we have the solutions (7.7).

7.5.2 Convection in the two directions

If a; # 0 then for Fourier coeficients we have following non seperate
system of ODEs:



254 7 Poisson equation: H. Kalis, I. Kangro, 2015 [83]

{ dike (y) +a2ane (v) = Vixare (v) + a1A ars = bre(y),k = 0,00,
Giks () + a2dis (v) — VArans (v) — a1 A are = bis (v), k = T, 00,
(7.15)
where l,? = 2”" \/),_k For the discrete problem in the system (7.15)
the eigenvalues A, 7LO need replaced with the discrete eigenvalues

L, | 10| (see chapter 1).

7.6 Poisson equation in polar coordinats

We consider the boundary value problem for Poisson equation in ring
with the periodical BCs in the ¢ direction:

1
p

9 (r2I00 ) L2180 — 1(6,1),6 € (0,21),7 € (r1,12),
(O ) ( ) dT(0,r) _ JT(2m,r)
T(9,r

20 a »r (l’ 7r2>

1) = (¢) T(9,r2) = () < (0,27),
(7.16)

where T1(9),T>(9), f(¢,r) are given periodical functions in the ¢ di-
rection.

Using uniform grid

¢; = jh,h =27m/N,j =1,N we obtain the boundary value problem
for ODEs in the following matrix form

U(r)+ %U(r) —AU(r)=F(r),U(r)) =U,U(r) =U,, (7.17)

where A is the 3-diagonal circulant matrix of N order,

A= hLZ [2,—1,0,0,...,—1] (in three point sencil or in multi-point sten-

cil in chapter 1),

U(r),U(r),U(r),F(r),Uy,U, are the column-vectors of N order with

the elements u;(r) = T (¢;,7)),

tj(r) ~ aTSI;’ .

ij(r) ~ L8 £i(r) = £5.7).)

”j(”l):Tl(%) uj(r2) =T(¢;),j=0,N. L
The corresponding discrete spectral problem Aw" = u,w",n=1,

with circulant matrix have following solution:
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w' = /1/N(w},wj, ...,wf‘\,)T,

D) (7.18)
Pn = 73 sin”(n/N),

where w'} = exp(inx;), j = 1,N,i = v/—1 are the components of or-

thonormed eigenvector w".

The solution of the spectral problem for differential equations

—w'(§) =Aw(9),¢ € (0,27),w(0) = w(2m),w'(0) = w'(¢),
is in following form:

wp(x) = \/Inexp(inx),ln =n2

We can consider the analytical solutions of the system of ODEs
(7.16,7.17)

using the spectral representation of matrix A = WDW* .

From transformation V. = W*U(U = WV) follows from 7.17 the
seperate system of ODEs

V(r)+ lV(r) —DV(r)=G(r),V(r)) =W*U,V(ry) = WUy,

g (7.19)
where V (r),V (r),V(r),V(r1),V(r2),G(r) = W*F(r) are the column-
vectors of N order with elements
vie(r), Vi (r), Ve (r), vi(r1), vie(r2), 8k (r), D = diag(t), k = 1,N.

The solution of the system (7.19) is

vi(r) = CerP* 4 Brr PE+ g (1),

where Cy, By are constants, py = /Mg, qk(r) is the particular solution.
For obtaining g (r) we use the transformation x = In(r) € [x1,x2],r =
exp(x),x; =1In(ry),x = In(ry).
Then we have the equation
v (x) — wevi (x) = exp(2x) g (x), with the solution
Cy sinh(pgx) + Cy cosh(prx) + plk Sy sinh(pr(x—1))gr(t)dt
( C1,C; are constants) and from ¢ = In(&) follows
_ 1 rn r \ Pk r \ Pk

ai(r) = 5, I, E(( z )= ( E ) )8k (&)dé.
The constantsCy, By, we can determine from given BC values vy (r1 ), vi(r2).

We can used also the Fourier method for solving (7.16) in the form
T(9,r) = Yiezvi(r)wi(¢), where wi(¢) are the orthonormed eigen-
functions, vi(r) is the solution (7.19), with v (r1) = (T1,w}),vi(r2) =
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(T27W]t)apk =k.
The solution we can also obtained in real form:
T(¢,r)=Yr  (ak(r)cos(kd)+ ays(r)sin(k¢) + “"C( ),
F(0,7) = T (i) cos(kb) -+ iy (1) infig) + B2
bre(r) = % " £(§,7) cos(kE)dE, bis(r) = % 02ﬂf(57 r)sin(k§)d¢&,
where akc(r),aks(r) are the corresponding solutions of (7.19) by
are(r) =1 Jo" ) Ti(8) cos(kE)dE ar(n) = 0" Ti(§)sin(k&)dE,
are(r2) = L [T T (E) cos(kE)dE, ars(r2) = L 57 To(&) sin(kE)dE,
gk(r) = bkc( ) or bys(r), pr = k.

Similarly we can obtained the solution of the discrete problem also
in the real form

uj(r) =YL= 1(akc(r)cos— S(r)SinT)+
fJ( r) = *Nz( ((I’)COS——l—bk;( )Sm%)_i_boa(r)’

be(y) = NZNfJ(r)COSMkJ bis(r) = NZNfJ< )Sm@>

where akc( ), aks(r) are the (;oirespondmg solutions of (7. 19)2b]2/
akc(rl) sz lTl(xJ)Coszj\;( 7aks(r1) NZJ lTl(x])Sln;[i;:7
are(rn) = NZ] 1 Ta(xj) cos =57 apg(r2) = NZJ 1 T (xj) sin =57

gik(r) = byc(r) or

bis(r), pic= v/ Na = N2, 5305 B = ZN2 "B+ B2,
(for FDSES u are replaced with A, = )

For the FDSES the matrix A is represented in the form A = WDW*
and the diagonal matrix D contain the first N eigenvalues dy = k?,

k=1,N from the differential operator (— aa’; ) in following way:

Ddy, = k2 for k =1, Na,
2)dy = (N —k)? for k = N5, N.
If d; = g, then we have the method of FDS.

7.7 Poisson equation with the BCs of first kind

For BCs of first kind we consider special boundary value problem
(7.1) with the homogenous BC in the x direction

T(0,y)=T(L,y)=0,y€ [0,H].
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We have the discrete problem (7.3) with the standart 3-diagonal
matrix A of the M = N — 1 order. We use the matrix representation
A =WDW ,W* =W where the diagonal matrix D contain the discrete

eigenvalues U, = ;2 sin? Z’\‘, and the column of the matrix W is equal

to the orthonormed eigenvectors wX with the elements
w’;:wk(xj) = \/;smn—k] k, j=1,M.
Then we have the seperate system of ODEs (7.6) with the solution
(7.7).
For the FDSES the matrix A is represented in the form form A = WDW
and the diagonal matrix D contain the first M eigenvalues
dp = X = (%)2, k=1, M from the differential operator (—8‘9—;)
Then in the solution (7.7) needs replaced p;, with A.
For special data

Ti(x) = aiwp, (x), Tr(x) = aawp, (x), f(x,t) = g(t)wp, (x) we have the
exact solution for Fourier method and for FDSES by M > max(py, p2, p3)
in the form

T(xay) = A1 Wp, (x)vm (y) +a2WP2 (x)vpz (y) + Wp3Vpss

)~ sinh(x, (H —y)),
))ASinh(sz)’):
) =— 5 Gpy (E,7)8(E)dE,

y
&,y) is the Green function in following way:

vp, (y) = sinh(x;,

H
y) = sinh(x,,H

GP
sinh(k, (H Ii}))smh Kp§ é y
i H - !
G (5,)’) = Sinh(K:[();Ef(),;pSIH)}l K,,y g
K, sinh (K, H) -2 =

For FDS (XZXj,j: 1,M) K = +/ Uk,
but for FDSES ki = /A, k = (pl,pz,p3).

7.8 Conclusions

The solutions of the boundary value problem for Poisson equations
are obtained analytically and numerically,
using the method of lines (lines are parallel to y axis). For periodical
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BCs we define the FDSES, where the finite difference matrix A is rep-
resented in the form form A = WDW*,

where W, D is the matrixes of finite difference eigenvectors and eigen-
values corespondently, W* is the conjugate matrix and the elements of
diagonal matrix D are replaced with the first eigenvalues from differ-
ential operator.

We consider uniform grid in the space x; = jh, j = 0,N,Nh =L, where
N is even number.

Using the finite differences of second order approximation for partial
derivatives of second order with respect to x we obtain the boundary
value problem for system of ordinary differential equations (ODEs)
in the matrix form. We are considered the analytical solutions of
the system of ODEs using the spectral representation of matrix A =
WDW* .



Chapter 8

Difussion equation: H. Kalis, A. Buikis, I.
Kangro, 2016 [34]

8.1 Introduction

We consider the 2-D stationary boundary value problem for diffu-
sion equation with piece-wise constant coefficients in multi-layered
domain. In one direction( x-axes direction) we have the homogenous
boundary condition of the first kind (BC) or periodical boundary con-
ditions (PBC).

We define the finite difference scheme with exact spectrum (FD-
SES) ([2]1975, [14] 2011) ,using the finite difference matrix A in the
form A = WDWT (W, D are the matrixes of finite difference eigenvec-
tors and eigenvalues), where the elements of the diagonal matrix D
are replaced with the first K eigenvalues from the differential
operator of the second order (K = N — 1 for BCs of first kind, K = N
for PBCs, N 4+ 1 is the number of mesh points in uniform grid) . The
solution is obtained analytically and numerically. We consider the
method of lines and Fourier methods for solving the corresponding
problems with homogenous BCs and PBCs.

A.Buikis ([9] ,[12] 1994) consider different assumptions for
averaging methods. With the help of this spline is reduce the 3-D prob-
lem of mathematical physics with piece-wise coefficients to 2-D prob-
lems for system of equations.

H.Kalis ([13],1997) developed an effective finite-difference method
for solving a problem of the above type. This method may be con-
sidered as a generalization of the metod of finite volumes for layered
systems. This procedure allows to reduce the 2-D problem to a system
of 1-D problems.

259
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8.2 A mathematical model in 2-D domain

The process of diffusion is consider in 2-D domain
Q={(xy):0<x<,0<y<L}.

The domain £ consist of multilauer medium. We will consider the
stationary 2-D problem of the linear diffusion theory for multilayered
piece-wise homogenous materials of M layers in the form

Qi={(xy):x€(0,]),y€ (yj-1,y) },i=1,M,

where hj = y; —y;_ is the height of layer Q;,yo = 0,yyy = L. We
will find the distribution of concentrations u; = u(x,y) in every layer
Q; at the point (x,y) € £; by solving the following partial differential
equation (PDE):

kj82uj/§x2+kj82uj/8y2+fj(x,y):0, (8.1)
where k; are constant diffusions cefficients, u; = u;(x,y) — the con-
centrations functions in every layer, f;(x,y) - the fixed sours function.
The values u; and the flux functions k;jdu;/dy must be continues on
the contact lines between the layers y =y;,j=1,M —1:

uj(x,yj) :Mj+1(xa}’j>v (8.2)
kiduj(x,y;)/dy =kjr1duji(x,y;)/dy.

We assume that the layered material is bounded above and below
with the plane surfaces y = 0,y = L with fixed boundary conditions of
third kind in following form:

yllq&ul(x 0)/8)/ (Xl(ul(x 0) ( )) =0

Vokydup (x,L)/dy + 0 (ups(x,L) — Tr(x) (8.3)

where }/12 + 0512 #0, y22 + 0622 %0, T1, T, are given functions. For y; =
Y» = 0 we have the BC of first kind. We have two form of fixed BCs
in the x, y directions:

1) the periodical conditions by x = 0,x = [ in the form

uj(0,y) = uj(l,y),0u;(0,y)/dx = du;(l,y)/dx,  (8.4)
2) the homogenous BC of first kind
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uj(0,y) =uj(l,y)=0,j=1M. (8.5)

8.3 Analytical solution with Fourier methods

For analytical solution of the problem (8.1)-(8.5) we will consider
Fourier series methods in following forms:
1) for BC (8.5) -
uj(x y) = X1 ajk(0)Xi(x), f5(x,y) = Xy bjk(v)Xic(x),
Ti(x) = Xy c1uXk(x) Ta(x) = Xy 102ka( )

where X (x) = \/E sin @ are the orthonormed eigenvectors
(Xis Xom) = foXk( X)Xy (x)dx = &, with eigenvalues

A= ()2, (— 59 — 2%, (x), X, (0) = X, (1) = 0),
bir(y) = (fj, Xk),cix = (T3, Xk),i = 1;2, 6 , is the Kroneker’s sym-
bol,

2) for BC (8.4) -
wj(x,y) = Y5 _ajx(V)Xk(x), fi(x,y) = X _o bjx(0) Xk (x), T1(x) =
Yo C1kXk(X)
Tr(x) = Y5 o c2x Xk (%),

where X (x) = \/Zexp(kax/l)

Xi(x)= \/; exp(—2mikx/l),i =+/—1 are the biorthonormed complex
eigenvectors
(X, X)) = fo X (X)X (x)dx = &, with eigenvalues

l = (HF)? 7(_%:7%)@( ), X (0) = X (1), X;(0) = X (1)),

k) = (£ X0, e = (T1, X)), o6 = (T, X[).
For the Fourier coefficients a;(y) we have following boundary
value problem for the system of ODEs:

—kjdaji(y) +kjd] (v) = =bjx(y),y € (vj-1,)):0 = 1,

ajx(vj) = aji1,(yy) ka1 (vj) = kjdy  (v)),
nkiay (0) — o (a1 4(0) —c16) =0,
Yokmayy 1 (L) + 0 (an k(L) — c2.6) = 0,
(8.6)
where a’! i L) = ay) ijk(y)

We have followmg solution of the ODEs system (8.6)
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a;1(y) = Cjysinh(y/2(y — yj—1)) + Bjrcosh(v/A(y —yj-1))—
i Ry S (VA =0 (e)d,

(8.7)
where the constants C; x, B, ; can be determined from following sys-
tem of algebraic equations: kj1Cjt1x = kj(Cjrchjr+ Bjrshjx) —

1 7.
\/}L_klcj7k’

1 [
Bj+17k = Cj7k5hj7k +Bj,kChj7k — —kj TkISj’k’J =1,M-1,

Y1kiCi v/ A — o (Brg—c1x) =0,
Vo (kaa/ M (Cova kChag k + Bug ieShar ) — ICh i)+
B
0 (Cr xShag g + B gchy o \/l—kl Sm ) —c2x) = 0.

Here shj = sinh(\/Ahj),chjp = cosh(y/Akhj),
ISj,k = fyy/]q sinh(\/ lk(yj —l‘))bﬁk(l)dt,
ICJ'J< = f;;’_l COSh(\/ lk(yj — t))bj7k(t)dt.

8.4 The AV-method with quadratic splines

The equation of (8.1) are averaged along the heights /; of layers ;
and quadratic integral splines along y coordinate in following form
one used [9]

uj(6,y) = Uj(x) +m(x) (v = 57) +;(x)G((y = 37)° /] — 1/1278)

where Gj = h;/k;,yj = (yj-1+yj)/2,y € [vj-1,5],
mj,e;,U; are the unknown coefficients of the spline-function,

Uj(x) = h;l fyyjtl uj(x,y)dy are the average values of u;, j = 1,M.
After averaging the system (8.1) along every layer £2;, we obtain M
system of ODEs

d*Uj(x)
dx?

kj +2h; " ej(x)+ Fj(x) =0, (8.9)

where F; = h;l fyyj/;l fj(x,y)dy are the average values of f;, j=1,M.
From the BCs (8.3) follows
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’)/1(k1m1 —61) —(Xl(Ul —m1h1/2—|—e1G1/6—T1) =0,

8.10

yz(kaM—eM)+(X2(UM+thM/2+eMGM/6—T2) =0, ( )
From the condition (8.2) follows

6Uj—|—3hjmj—|—ejGj = 6Uj+1 —3hj+1m]'+1 —f—ej+1Gj+1, 8.11)

kimj+ej=kjiimji1—ej1,j=1M~—1.
From (1.12) excluding m | we obtain

3mikj(Gj+Gjy1)+e;(Gj+3Gj11)+2ej11Gjr1 = 6(Ujr1 —Uj),
(8.12)
where j =1,M — 1 . Decreasing index j and excluding m;_; follows

3mjkj(Gj+Gj,1) —ej(Gj+3Gj,1) —2e; 1Gj1 = 6(Uj —Ujfl),

(8.13)
where j = 2,M . Excluding m; from (8.12,8.13) we obtain for deter-
mined e; following system of M — 2 algebraic equations

2ej-1Gj—1(Gj+Gj11) +¢;((Gj+3G;-1)(Gj+Gj1)+
(Gj +3Gj+1)(Gj + ijl)) +2€j+1Gj+1(Gj—|- ijl) = (8.14)
6(Uj1—Uj)(Gj+Gj—1)—6(U;—U;1)(Gj+Gjp1),

where j =2,M — 1.
From (1.11), excluding m,my we get

el [3(G1 + Gz)('}’l + 061G1/6) + (G1 + 3G2)(’}’1 + (1161/2)]+

2e:Gr(n1 +1G1/2) =6(Uy—Uy)(n + 1G1/2)—

3(X1(U1 — Tl)(Gl +G2),

2ep—1Gu—1(n+ 000Gy /2) +em[3(Gy + Guy—1) (12 + 2Gar/6)+

(G +3Gu—1) (2 + Gy /2)] =

—6(Uy —Up-1)(a+02Gp/2) =30 (Uy — 1) (G + GM_l()é s

15)

Therefore we have following system of linear algebraic equations

Ajej_1+(Aj+Bj+1)ej+Bjejr1 =aj{Ujr1 —U;j) —bj(Uj—Uj-1),
(8.16)

where eg = epr+1 :O,Aj = ijl/(Gj—f—Gj,l),bj = 3/(Gj—|—Gj,1) =

aj*laj:27M7

Bj=Gj1/(Gj+Gj1),a;=3/(Gj+Gjy1),j=1,M—1,

ay = 1.50/(1+ Gy /2),by = 1.5 /(1 + 1 G1/2),
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Ar=n/(n+a1G1/2),By =1/(r+ 0Gy/2),
Uo="T,Uy+1 =1

8.5 The finite difference approximation

For solving 2-D problems we consider an uniform grid in the x-
direction x; = kh,Nh = [,k = 0,N, We can the PDEs (8.1) rewriten
in following vector form:

—kjAv;(y) + ki (v) +8;(y) =0,/ =1,M, (8.17)

where v;(y),g;(y) are the vectors-column with elements

vik = ui(x,y), gk = fi(wy),k=T1K,
matrix A is the 3-diagonal of K order in following forms:
1) for BCs of first kind , K=N-1,

- this circulant matrix can determined wth the first row
A=52-10..00—1].
From conditions (1.3, 1.4) follows

Vj(yj) =vj+1(v)),

kivi(vi) =kjs1vjs1(v)), 8.18)
Y]k]V](O)-OC](V] (O)—Tl) :O, )
Yokyvy (L) + alphay(viy (L) —T,) =0,
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where T, T are the vectors -column of K order with elements
Tl<xk)aT2(xk>7k = L,K.

The calculation of circulant matrix (matrix invertion and multiplica-
tion) can be carried out using simple formulae for obtaining the first
N elements of matrix.

8.6 Analytical solution for finite difference schemes

The solution of the corresponding discrete spectral problem AwK =
pwk is
Dfor BCs of first kind k = 1, N — 1,orthonormed eigenvectors (w

N 11 Wkwm _ 6km7

k’wm) —

w’]‘.:\/g sin =+~ ”Jk , J,k=1,N—1 (elements of the symmetrical matrix
W),
eigenvalues L = ;2 sin’ ’2‘1’\5 (elements of the diagonal matrix D ),

2) for periodlcal BCs k = 1, N biorthonormed eigenvectors (w*, w) =

N k
1W 5km7

w’]‘. = \/;GXP(Zﬁlk]/N),W];j = \/%exp(—%rikj/N),i = /1 (ele-
ments of the complex matrices W, W,.),

eigenvalues L = % sin? kﬁ” (elements of the diagonal matrix D ).

For periodical BCs we can consider the finite difference approxima-
tion for second order derivative u”(x;) in the uniform grid with p + 1
points stencil

(Xk—p/2* " 5 Xk—1,Xks Xkt 15"+ s Xk—p2)- We consider the approxima-
tion of the O(h”) order in following form:

p/2 hPu(P+2) ()

Cntt(xp_ ) +Ep)———===
m—;p/Z m ! (p+2)!

Xhp/2 <& <Xiypya-

For m = 0 follows the equation Cy = —2 Zp /2 Cy,- The others coeffi-
cients Cy,, (m > 0) we can determined from the linear system. Solution
of this system give following coefficients:

1)p=2:C1 :17C0=—2 Ez——Z7

Dp=4:C1=3,C,= 12,Co = —3,E;==38,
3(p=6:C1=3,C=—73,C= 90,60 - —1§,E4 =72,
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Hp=8:C1=8,Cr=—1,C = 515,C = —545,Co = — 22,
Eg = 1152.
In this case the matrix A of FDS is circulant with the form

1
A= ﬁ[c()?Cl;"' 7Cp/2707"' 703Cp/27cp/2717"' ;C27C1]

and matrix A has following eigenvalues (k = 1,N):
1) p=2: = 75 sin*(k/N),

Dp=4:w = h—z(sin2(7rk/N)+§sin4(nk/1v)),
Dp=6:W = ;—2(sin2(7rk/N) +1 sin4(7rk/N) + 485 sin6(7rk/N))
4y p=8: = (sm (7rk/N) 1sin *(mk/N) + 5sm (mk/N) +

3‘2. sin®(mk/N)).
In the matrix form we get (for BCs of first kind W, = W)

AW =WD,WW, = E,W ! =W, ,A = WDW,,

where the elements of the diagonal matrix D is dy = .

Using in (8.17)the transformation 7;(y) = WTv;(y) (WT = W, for
periodical BCs, W! = W for BCs of first kind) follows the seperate
system of ODEs

—k;Dv;(y) + k7 (y) +&;(y) =0,/ =T, M, (8.19)
or

where g; = Wng,dk are the elemnts of matrix D, v; , g x are the el-
emnts of vectors v;, g;.

For (8.19) we have following conditions:

‘7j7k()’j) =Vjt k()’j) kj V] k(yj) J+1V]+1 k(J’j) Jj=1M-—1,
nikiv 4 (0) — a1 (91 4(0) — €1 4) =
’}/szVMk(L)—i—OCz(VMk( ) — C2 k) = 1,K,

(8.21)

where ¢ g, 2k are the elements of vectors W Ty, W' T.

We have solution of (1.22, 8.21) in the form (8.7), where a; Ay €1 ke, €2k

are replaced with v; ¢, dy,,Cy k,Co k-
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For the finite difference scheme with the exact spectrum (FDSES)
the matrix A is represented in the form form A = WDWT and _the
diagonal matrix D contains the first K eigenvalues d; = 7Lk2, k=1,K

from the differential operator (—g—xzz) correspondly (the eigenvectors
remained).

For the FDSES with the periodical BCs the elements of matrix D
are replaced in following way:
Ddy = A7 for k =1,N,, where N, = N/2.
2)dy = A}, fork=Np,N —1,dy =0.

8.7 Solving of the problem in 2 layers

For 2 layers (M=2) we consider following parameters: N = 10,yg =
0,y1 = L,y =3,k; = 10,ky = 1,T2(x) = 0, fi(x,y) =0, = p» =
0,1 =0 =1,

fo(x,y) = P&(y —2)sin(27x), or fo(x,y) = Psin(27x)

Ty (x) = sin(zx)- for BCs of first kind, 7;(x) = sin(27x)- for periodi-
cal BCs,

where P = 10,8 (y — 2)- is the delta Dirax function.

In this case the analytical soutions are only depending on two eigen-
vectors X1, X, and w!, w!.

The numerical results in y-direction are obtained on uniform grid with
6 and 30 mesh points.

8.7.1 The exact solution

The exact solution for BCs of first kind using the 2 eigenvectors

X1, X, (sin(7mx) = /1/2X; (x),sin(27x) = \/1/2X»(x)) in the form

{ul(x,y) =ay1(y) sin(mx) + a1 2(y) sin(27x),

’ ) 22
s(x,9) = a1 (v) sin(xx) + (@2.2(y) — P sin(2mr), %)

w here
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ai.1(y) = Cy 1 sinh(my) + B; | cosh(my),

ai2(y) = Ci 2sinh(2my) 4+ By 2 cosh(2my),

az1(y) = Cp g sinh(m(y—1)) + By, cosh(m(y — 1)),
az2(y) = Cp 1 sinh(2m(y — 1)) +B, 1cosh(2m(y—1)),

(8.23)

_ _ cosh(m)+x; sinh(r) tanh(27)
Bl,l - 17Cl,l —  sinh(m)+ K cosh(x)tanh(27) °

K1 = %,Bz,l = C171 Sil’lh(TC) +Bl,1 COSh(TL’),CQJ = K] <C171 COSh(TC) +
3171 sinh(?t),

Bi2=0,Cip= 2nk2(sinh(2ﬂ)figlc(§s)h(2ﬂ) sinh(47))

C272 = K1C172 COSh(Zﬂ:),BzQ = C172 Sil’lh(ZTL’),

p1(y) =10,y € [1,2];sinh(27(y — 2)),y € [2,3]] for fo(x,y) = P& (y —
2)sin(2mx)

p1(y) = (cosh(Qme(y—1)) —1)/(2x) for f>(x,y) = Psin(27x).

For periodical BCs using the eigenvectors X, X", (sin(27x) = % (X1(x)—
X (x),X{(x) =X_1(x)) in the form

ur(x,y) = ai1(y) sin(2mx),uz(x,y) = as 1 (y) sin(2nx),  (8.24)
w here

a1 (y) = Cy 1 sinh(2my) + By j cosh(2my),
a1 (y) = oy sinh(27(y — 1)) + By, cosh(27(y — 1)) — P2

2/ piky?
(8.25)

_ _ cosh(27)+« sinh(27) tanh(47)—Pp, (3) / (2mk; cosh(4 1))
By =1Cr1=-B1, lsinh(27r)+1<1 cosh(27r)ﬁlamh(47r) : ’

By1=Ci; Sinh(27l') +Bi11 COSh(27l'),C271 =K (C171 COSh(27’L’) +Bi 1 sinh(27r),

8.7.2 The averaging solution

For the averaging solution F; =0, F, = Psin(27xx) for f, = Psin(27x),
F, = 0.5Psin(2zx) for f, = P&(y — 2)sin(27mx) we have two from
(8.16) linear algebraic equations

{(Bl +1)e;+Biex=a; (U —Up) —

b1 (Ui —T),
Arey + (Az + 1)62 =a (T — Uz) —b

NN (8.26)
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G 3 3
2 A2: 1 = b:—7

where B| = G164 = GGy D1

G
G146y
by =

3
Gi+Gy 92 =
The solutions of (8 26) is in the form

el :01,1U1(X)+Cl72U2(X)—|-C170T1 (x), (8.27)
ey = 6271U1 (X) + C272U2(x) + Cz’oTl (x),
bo3+b1(Ax+1) bos+Braz b1(Ax+1
where ¢1) = == "=, c1p = =3 ,C1,0 = —(b(” ),
boo+b1As _ bopt(Bit+lay _ biAy
C2,1 b01 3622 — — bo 1 ;62,0 — — Dol ’

bo1 = (B1+1)(A2+ 1),b072 =Asa;+ (B + 1)b2,b0’3 = A2+ 1Da;+
B b,. The solution of the 2 ODEs (8.9) for the BCs of first kind we
can obtain with using two orthonormed eigenvectors X (x),X>(x) in
following form:

U (x) = af sin(7mtx) +al sin(27x), Uy (x) = a? sin(mx) + a3 sin(27x),

where the coeficients alj‘- satisfy folowing system of algebraic equa-
tions
—kl/llal +2(c1, 1621 +cj 2611 +c10) =0,
—kzllal + (CZ,Ial + C272a1 + C270) 0,
—k lza; + 2(c171a£ + c172a%) =0,
—kz)yza% + (Cz,laé + C27261%) +pBP=0,
where 8 = 1 for f, = Psin(27x),8 = 0.5 for f, = P6(y—2)sin(27x) .
For the periodical BCs the solution we can obtain using the biorthonormed
eigenvectors Xj (x),X; (x) in following form:

(8.28)

Uy (x) = ai sin(27x), Us (x) = a3 sin(27x),

where the coeficients a{ , a% can be obtained from folowing system of

2 algebraic equations

{—/q/l]a% +2(c11af +c10a7 +c10) =0, (8.29)

—kzlla% + C271a% + Czyza% +c0+ BP=0.

We have following solution of (8.28,8.29)

a; = (2c12(c2,0+p2BP) —2c10(c22 — kA1) /dety,
= (2c2,1¢1,0 — (c20 + P2BP)(2c1,1 —k1Ar))/dety,

det; = (2c1,1 —kid)(c20 —kodi) —2c1 2021,

ai = 2C172BP/d€t2,a% = —ﬁP(ZClJ —klﬂ,z)/del‘z,
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delz = (2C171 —kl)uz>(C272 —kz)tz) — 26172C2’1, where P2 = 1 for peri-
odical BCs, p; = 0 for BCs of first kind.
From (8.8) we can determined u; (x,y),uz(x,y) because

my(x) = m(aUz(x) —Uj(x)) —e1(x)(G1 +3G2) —2e2(x)Ga),
my(x) = m(ﬂUz(x) —Uj(x)) +e2(x)(G2+3Gy) +2e1(x)Gy).
(8.30)

8.7.3 The solutions of the FDS and FDSES

The analytical solution of FDS from (8.19 - 8.21) we can obtained in
following form:

71,1(y) = C1,1sinh(y/d1y) + By 1 cosh(v/dyy),y € [0,1],
12(y) = C2sinh(y/day) + By, 2COSh(\/_y) € [0, 1],
v2.1(y) = Ca,1 sinh(v/d) (y — ))+321005h(\/_( —1)),ye[1,3],
v22(y) = Capsinh(v/da(y— 1)) + Bapcosh(vda (y — 1)),y € [1,3],

(8.31)
where the coefficients C; ., B; ; can be obtained from (1.25) similarly
for a; s, where the value 7,27 are replaced with \/d;,\/d>, and By | =
\/N /2. For FDS d| = l1,d> = [, but for FDSES d; = 4y,d; = A;.

For the periodical BCs using the eigenvectors w!,w!, (sin(27x;) =

IV (! () —wh (x;), wh(x;) = w1 (x)), a1 = 1) we get

71.1(y) = Cy 1 sinh(y/dyy) + By 1 cosh(y/dyy),y € [0,1],
)=

1721( C271 Sinh(\/d_l(y—1))—|—Bz,1COSh<\/d_1(y—l))—
PECL ve1,3),

(8.32)
where the coefficients C; ;, B x can be obtained from (8.25) similarly
as a; x, where the value 27 are replaced with v/d;. For FDS d; =,
but for FDSES d; = A; (we have the exact solution).
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8.8 Some numerical results

For the BCc of first kind the numerical results can be represented in
following way:

1) fa(x,y) = 10sin(27)- exact solution (Fig. 8.1), FDSES solution
(Fig. 8.2), FDS solution (Fig. 8.3), averaged solution (Fig. 8.4),

2) fo(x,y) = 10sin(27)d (y — 2)- exact solution (Fig. 8.5), FDSES so-
lution (Fig. 8.6), FDS solution (Fig. 8.7), averaged solution (Fig. 8.8).
For periodical BCc we have following representations:

1) f2(x,y) = 10sin(2x)- exact and FDSES solution (Fig. 8.10), FDS
solution (Fig. 8.11), averaged solution (Fig. 8.12),

2) f(x,y) = 10sin(27) 5 (y —2)- exact and FDSES solution ( Fig. 8.9),
FDS solution (Fig. 8.13), averaged solution (Fig. 8.14).

8.9 MATLAB programs

1) BDC:s of first kind:

1 function Divi_slani(M,N)%x,y plakne,N=6

> 11=1;12=2.0;k1=10;k2=1;G1=11/k1; G2=12/k2;kap=kl/k2;

3 P=10;1=1;L=3.0;M1=M+1; x=linspace(0,1,M1); h=1/M;M2=M-1;

4+ N1=N+1;y=linspace(0,L,N1)'; N11=N/L+1l; N12 =N1-N11;N20=N11+1;
5 lk=4/(h"2) % (sin(0.5% (1:M2) '+*h*xpi/1l)) ."2;CKl=sqrt (2/M) ; $FDS
¢ 1lkO0=((1:M2)'xpi/l1l)."2; S%FDSES

7 1lk=1kO0;

s W=CKl*sin (pix (1:M2)'*x(2:M)/1)"';

9 %Analitiskais atrisinajums

10 Cll=-(cosh(pi)+kap*sinh (pi)*tanh (2xpi)).

11/ (sinh (pi)+kap*cosh (pi) *tanh (2+pi));

2 B1l1l0=sqrt (M/2); KMl=sqrt (lk(1l)); KM2=sqrt (1k(2));

13 C110=-B110=* (cosh (KM1l) +kap*sinh (KM1) xtanh (2+xKM1)) .

14/ (sinh (KM1) +kap*cosh (KM1) *tanh (2%xKM1) ) ;

15 B21=Cll*sinh (pi)+cosh(pi);C2l=kap* (Cllxcosh(pi)+sinh(pi));
16 B210=Cl10*sinh (KM1)+Bl1l0*cosh (KM1) ;

17 C210=kap* (C110*cosh (KM1) +B110xsinh (KM1)) ;

18 %Cl0=P*sinh (2*pi)/( 2*pixk2); %s funkcija

19 %C1l00=Pxsinh (KM2)/( KM2xk2xCKl); %a funkcija

20 C1l0=P* (cosh(4*pi)-1)/(4xpi~“2+xk2);%nep. avots

21 Cl00=P=* (cosh (2xKM2)-1) / (1k (2) *xk2%xCK1) ; $nep. avots

» Bll=1l; C1l2= C10/( sinh(2*pi)+...

23 kapxcosh (2*pi) *tanh (4*pi)) /cosh (4*pi);

24 C120= C100/( sinh (KM2)+kap*cosh (KM2) xtanh (2xKM2) ) /cosh (2xKM2) ;
25 B22=Cl2*sinh (2xpi) ; C22=kap*Cl2*cosh (2xpi) ;B12=0;
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B220=C120*sinh (KM2) ; C220=kap*Cl120*cosh (KM2) ; B120=0;
Y¥11=Cllxsinh (pi*y (1:N11))+Bllxcosh(pi*y(1:N11));
Y¥110=C1l10*sinh (KM1*y (1:N11))+Bl1l0xcosh (KMlxy (1:N11));
Y12=Cl2*sinh (2xpi*y (1:N11))+Bl2xcosh (2 "pi*y (1:N11));
Y¥120=C120%sinh (KM2*y (1:N11) ) +Bl120*xcosh (KM2xy (1:N11));
Y¥21=C21lxsinh (pi* (y (N20:N1)-11))+B2lxcosh (pi* (y(N20:N1)-11));
¥210=C210*sinh (KM1* (y (N20:N1)-11))+...
B210*cosh (KM1x (y (N20:N1)-11));
Y22=C22*sinh (2xpix (y (N20:N1)-11))+. ..
B22*cosh (2*pix (y (N20:N1)-11));
Y¥220=C220*sinh (KM2* (y (N20:N1)-11))+. ..
B220*cosh (KM2x (y (N20:N1)-11)) . .
-P* (cosh (KM2x (y (N20:N1)-1))-1) /KM2"2/k2/CK1; $nep, FDS
%$for i=N20:N1

$ if y(i)< 2,
%$Y¥220 (i-N11)=C220*sinh (KM2x (y (i)-11))+...
$B220xcosh (KM2x (y (1) -11)); else
%$Y220 (i-N11)=C220*sinh (KM2x (y (i) -11) ) +B220*cosh (KM2x* (y (i) -11))
%-P*sinh (KM2x (y (i) -2)) /KM2/k2/CK1;

% end
%$end % a4, FDS
vl=zeros (M2,N1);v1(1,1:N11)=Y110;v1(2,1:N11)=.
Y¥120;v1(1,N20:N1)=Y210;v1l(2,N20:N1)=Y220;
v2=zeros (M2,N1) ; v=zeros (M1,N1) ; v2=Wxvl;v(2:M, :)=v2;
u=zeros (N1,M1) ;ul=zeros (N1,M1);
for i=1:N1
if y(i)< 11, u(i,:)= sin(pi*x(:))*Y11l(i)+sin(2*pi*x(:))*¥Y12(1i)
%$elseif (11 < y(i)&& y(i)< 2) %a,prec
$u(i, :)=sin(pi*x(:))*Y¥21 (i-N11)+sin(2xpixx(:))*Y¥22 (i-N11);
%4, prec

else
$u(i, :)=sin(pi*x(:))*Y¥21 (i-N11l)+sin (2xpi*x(:)) *.
(Y22 (i-N11) -P*0.5*sinh (2*pix (y (i) -2)) /pi/k2) ; %1, prec
u(i, :)=sin(pi*x(:))*Y¥21 (i-N11l)+sin (2xpixx(:))* (Y22 (i-N11)-.
P%x0.25% (cosh (2% pix*(y(i)-1))-1)/pi~2/k2);%nep

end
end
Mul=max (u(N1l1l, :));mul =min(u(N1l1,:));
Mu=max (max (u(N11:N1,:)));mu =min(min(u(N11l:N1, :)));
Mvl=max(v(:,N11));mvl =min(v(:,N11));
Mv=max (max (v (:,N11:N1l)));mv =min(min(v(:,N11:N1)));
figure
[C,h]=contour(x,y,v',620);
clabel (C);
title(sprintf ('LevEDSES—-nep , Maxv=%6.4f, Minv=%6.4f"',.
Mv,mv)) ,xlabel('x'),ylabel('y")
$title (sprintf ('LevFDSES-del , Maxv=%6.4f, .
Minv=%6.4f',Mv, mv) ), xlabel('x'),ylabel('y"')
$title (sprintf ('LevFDS—-nep , Maxv=%6.4f, .
Minv=%6.4f',Mv, mv) ), xlabel('x'),ylabel('y"')
$title (sprintf ('LevFDS-del , Maxv=%6.4f, .
Minv=%6.4f',Mv, mv) ), xlabel('x'),ylabel('y"')
figure,plot (x,v(:,N11))
$title (sprintf ('FDSES-del u(x,1), Maxu(ll)=%6.4f, .
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Minu (11)=%6.4f',Mvl, mvl)), 6 xlabel('x"'),ylabel ('u(1ll)")
title(sprintf ('FDSES-nep u(x,1), Maxu(ll)=%6.4f, .

Minu (11)=%6.4f',Mvl, mvl)), 6 xlabel('x'),ylabel('u(1ll)")
$title (sprintf ('FDS-del u(x,1l), Maxu(ll)=%6.4f, .
Minu(11)=%6.4f' ,Mvl, mvl)), xlabel('x'),ylabel('u(1ll) ")
$title(sprintf ('FDS-nep u(x,1l), Maxu(ll)=%6.4f, .
Minu(11)=%6.4f' ,Mvl, mvl)), xlabel('x'),ylabel('u(1ll) ")
figure,plot (x,u(N11, :))

$title (sprintf ('Prec—-del u(x,1l), Maxu(ll)=%6.4f, .
Minu(11)=%6.4f',Mul, mul) ), xlabel ('x'),ylabel ('u(ll)")
title(sprintf ('Prec—nep u(x,1), Maxu(ll)=%6.4f,
Minu(11)=%6.4f',Mul,mul) ), xlabel('x'),ylabel ('u(ll)")
figure

[C,h]=contour (x,y,u, 20);

clabel (C);

$title (sprintf ('Prec—del u, Maxu =%6.4f, .
Minu=%6.4f',Mu,mu)),xlabel('x'),ylabel('u(ll)"')
title(sprintf ('Prec—nep u, Maxu=%6.4f, .
Minu=%6.4f',Mu,mu) ), xlabel('x'),ylabel('u(ll)")
Xl=ones (N1,1) *x; Yl=y*ones (1,M1);

figure, surfc(X1l,Y1l,u),colorbar

xlabel('x"), ylabel('y'), zlabel('u')

title(sprintf ('Virsma, Maxu=%6.4f, Minu=%6.4f',Mu,mu))
$Viduvesana

B1=G2/ (G1+G2) ; al=3/ (G1+G2); bl=3/Gl;

A2=Gl/ (G1+G2) ; a2=3/G2;b2=al;

b03=(A2+1) xal+Bl*b2;b02=A2*xal+ (B1+1) xb2;
b01l=(A2+1) * (B1+1) -B1*A2;

cl2=(b03+Bl*a2) /b01;
cll=-(b03+blx (A2+1)) /b01; cl0=(A2+1) ¥bl/b01;

c22=-(b02 +(B1+1)*a2)/b01;
c21=(b02+bl*A2) /b01l; c20=-b1l*A2/b01;
detl=(2xcll-klxpi”~2) * (c22-k2xpi”~2)-2*cl2xc21l;
det2=(2+cll-kl*x4*pi”~2) x (c22-k2*4*pi~2)-2*cl2*xc21;
al2=(-(2*cll-klxpi”~2) *c20+2*xcl0*c21) /detl;
all=(-(c22-k2+pi~2) *2+xcl1l0+2+xc20*cl2) /detl;

a22=-Px (2xcll-kl*4xpi~2) /det2; a2l1=2xPxcl2/det2;% nep. gad.
%a22=—0.5%P* (2+xcll-kl*x4*pi”~2) /det2; a2l=P*cl2/det2;% 1
Ul=allx*sin(pixx)+a2lxsin(2xpixx);

U2=al2*sin (pi*x)+a22*sin (2xpi*x);
El=cl2%U2+cll*xUl+clO0xsin (pi*x);
E2=c22*U2+c21*Ul+c20*sin (pi*x);

Mll= (6% (U2-Ul)-Elx (Gl+3%G2)-2xE2%xG2) / (3xkl* (G1+G2));
M2= (6% (U2-Ul) +E2* (G2+3*G1l) +2*xE1%xGl) / (3xk2* (G1+G2) ) ;
for i=1:N1

if y(i)< 11, ul(i,:)= Ul (:)+M11(:)*x(y(i)-0.5).
+E1(:)*Glx ((y(i)-0.5)"2-1/12);

else

ul (i, :)= U2(:)+M2(:)*x(y(i)-2)+E2(:)*G2% (0.25* (y (i)-2) "2-1/12);
end

end

Mu2=max (ul (N11, :)),;mu2 =min(ul (N11, :));MUl=max(Ul); .
mUl=min (Ul) ; MU2=max (U2) ; mU2=min (U2) ;

Mu=max (max (ul (N11:N1,:)));mu =min (min(ul (N11:N1,:)));
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134 figure

135 [c,h]=contour (x,y,ul, 20);

136 clabel (c);

137 %title(sprintf ('LevAv-del ul, Maxu =%6.4f,.

138 Minu=%6.4f',Mu,mu)),xlabel('x'),ylabel('y"')

139 title(sprintf ('LevAv-nep ul, Maxu =%6.4f,

140 Minu=%6.4f',Mu,mu)),hxlabel('x'),ylabel('y")

141 figure,plot (x,ul (N11, :))

142 %title (sprintf ('FuncAv-del u(ll), Maxv(ll)=%6.4f, .

143 Minv(11l)=%6.4f' ,Mu2,mu2)),xlabel('x'),ylabel('u(ll)")
144 title(sprintf ('FuncAv-nep u(ll), Maxv(ll)=%6.4f, .

145 Minv (11)=%6.4f',Mu2,mu2)),xlabel('x'),ylabel('u(ll)")
us figure,plot (x,Ul)

147 %title (sprintf ('V1Av-del , Max=%6.4f, Min=%6.4f', .

148 MU1l,mUl)),xlabel('x'),ylabel('Ul")

149 title(sprintf ('V1Av-nep , Max=%6.4f, Min=%6.4f"',.

150 MU1l,mUl)),xlabel('x'),ylabel('Ul")

151 figure,plot (x,U2)

152 %$title (sprintf ('V2Av-del, Maxv=%6.4f, Min=%6.4f"', .

153 MU2,mU2)),xlabel('x'),ylabel('U2")

154 title(sprintf ('V2Av-nep, Maxv=%6.4f, Min=%6.4f"',.

155 MU2,mU2)),xlabel('x'),ylabel('U2")

156 X2=ones (N1, 1) *x; Y2=y*ones (1,M1);

157 figure, surfc(X2,Y2,ul),colorbar

158 xlabel('x'), ylabel('y'), zlabel('u')

159 title(sprintf ('VirsmaAv, Maxv=%6.4f, Minv=%6.4f',Mu,mu))

Using the operator Divi-slani(10,6)we have following results for
maximal Mu and minimal value mu of the solution u;(x,y)
(for the exact and FDSES solution-Mu = 0.2446, mu = —0.2381, f>(x,y) =
10sin(27); Mu = 0.7596, mu = —0.7548, f5(x,y) = 10sin(27)8(y —
2)):
1) for FDS and f>(x,y) = 10sin(27), Mu = 0.2521,mu = —0.2460,
2) for FDS and f>(x,y) = 10sin(27)8(y—2), Mu0.7722, mu = —0.7674.

1) Periodical BDCs:

1 function Divi_slaniP (M,N)%x,y plakne,N=6, M-para sk.
> 11=1;12=2.0;k1=10;k2=1;Gl=11/kl; G2=12/k2;kap=k1/k2;

3 P=10;1=1;L=3.0;M1=M+1; x=linspace(0,1,M1); h=1/M;M2=M-1; NH=M/2;
4+ hl=L/N; N1=N+1;y=linspace (0,L,N1)'; N11=N/L+1;N20=N11+1;

5 NT=(1:M)'/l;d=zeros(M,1);

6 lk=4/h"2% (sin(pixh*NT))."2; %2.order FDS

7 %1lk=4/h"2x ((sin(pi*h*NT)) . 2+1/3* (sin (pi*h*NT))."4);

8 %4.order FDS

9 %1lk=4/h"2x ((sin(pi*h*NT)) . 2+1/3* (sin (pi*h*NT)) . 4.

10 +8/45% (sin (pi*h*NT))."6);%6.order FDS

11 %$1k=4/h"2x% ((sin (pi*h*NT)) . " 2+1/3% (sin (pi*h*NT)) . 4+.

12 8/45% (sin (pi*h*NT)) . " 6+4/35% (sin (pi*h*NT)) ."8);
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%$8.order FDS

Ck=sqrt (h/L) ;

1k0=(2* (1:M) '*xpi/1l) ."2;

d=1k; %FDS

d(1:NH)=1kO0(1:NH);

d(NH:M2)=1k0O(NH:-1:1) ; $FDSES

W=Ck*exp (2+pi*xix* (1:M) '+*x/1)';

W1l=Ck*exp (—2+pi*i* (1:M) '*x/1)"';

pil=sqrt (d(1));

%$Analitiskais atrisinajums

Cl0=P*sinh (pil)/( pilxk2);beta=0.5; %1 funkcija
%C1l0=P* (cosh (2%xpil)-1) / (pil"2+k2) ;beta=1; $nep. avots

Cll=-(cosh(pil)+kap*sinh (pil) *tanh (2+pil)—-C10/cosh(2*pil)).

/ (sinh (pil) +kap*cosh (pil) *tanh (2+pil));
B21=Cllxsinh (pil) +cosh (pil);
C21l=kap* (Cllxcosh(pil)+sinh(pil));
Bll=1;
Y¥11=Cllxsinh (pil*xy (1:N11))+Bllxcosh(pilxy(1:N11));
Y21=C2l*sinh (pil* (y(N20:N1)-11))+...
B2lxcosh (pilx* (y (N20:N1)-11));
u=zeros (N1,M1) ;ul=zeros (N1,M1);
for il=1:N1
if y(il)< 11, u(il, :)= sin(2xpixx(:))*Y11(il);
elseif (11 < y(il)&& y(il)< 2) %a,prec
u(il, :)=sin(2*pi*x(:))*Y¥21(il-N11); %4, prec
else
u(il, :)=sin(2xpi*x(:))* (Y21 (il-N11)-...
Pxsinh (pil* (y(il)-2))/pil/k2); %4
$u(il, :)=sin(2*pi*x(:))* (Y21 (i1-N11)-...
%P* (cosh (pil* (y(il)-1))-1) /pil~2/k2) ; $nep
end
end
%$C21lxsinh (2xpil) +B21lxcosh (2xpil) -C10, u(N1,:)'
$Y21
Mu=max (max (u(N11:N1,:)));mu =min(min(u(N11l:N1, :)));
Mul=max (u(N1l1l, :));mul =min (u(N1l1,:));
figure,plot (x,u(N11, :))
%$title (sprintf ('Exact-cont u(x,1), Max u=%6.4f,
Min u=%6.4f',Mul,mul)),hxlabel('x'),ylabel('u(ll)"')
$title (sprintf ('FDS—-cont u(x,1l), Max u=%6.4f, .
Min u=%6.4f',Mul,mul)), xlabel('x'),ylabel('u(ll)"')
$title (sprintf ('FDS-4s u(x,1l), Max u=%6.4f, .
Min u=%6.4f',Mul, mul) ), xlabel('x'),ylabel('u(ll)"'")
title(sprintf ('Exact-s u(x,1), Max u=%6.4f, .
Min u=%6.4f',Mul,mul)), xlabel('x"'),ylabel('u(ll)")
figure
[C,h]=contour (x,y,u,20);
clabel (C);
$title(sprintf ('Exact-cont u , Max u=%6.4f, .
Min u=%6.4f',Mu,mu)),xlabel('x'),ylabel('y")
$title (sprintf ('FDS-cont u , Max u=%6.4f,.
Min u=%6.4f',Mu,mu)),xlabel('x'),ylabel('y")
$title (sprintf ('FDS-a4 u , Max u=%6.4f, .
Min u=%6.4f',Mu,mu)),xlabel('x'),ylabel('y")

275
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67 title(sprintf('Exact-1 u , Max u=%6.4f, .

68 Min u=%6.4f',Mu,mu)),xlabel('x'),ylabel('y")

6 Xl=ones (N1l,1)*x;Yl=yxones(1,M1);

70 figure, surfc(X1l,Yl,u),colorbar

71 xlabel('x'), ylabel('y'), zlabel('u')

72 title(sprintf('Virsma, Max u=...

73 %6.4f, Min u=%6.4f',Mu,mu))

74  %$Viduvesana

75 pil=2+*pi;

76 Bl=G2/ (G1l+G2) ;al=3/(G1l+G2); bl=3/G1l;

77 A2=Gl/ (G1+G2) ; a2=3/G2;b2=al;

73 b03=(A2+1) *xal+Blxb2;b02=A2*al+ (B1l+1) xb2;

79 b01=(A2+1) * (B1+1) -B1xA2;

s0 cl2=(b03+Bl*a2)/b01l;

81 c¢ll=—(b03+blx (A2+1))/b01;cl0=(A2+1) *bl/b01;

2 c22=-(b02 +(B1l+1l)*a2)/b01;

33 c21=(b02+blxA2) /b01;

84 c20=-b1lxA2/b01;

35 detl=(2+cll-klxpil”2)* (c22-k2xpil”~2)-2xcl2+c21;
s6 al2=(—(2*cll-kl*pil~2)* (c20+beta*P)+. ..

87 2%clO*c2l) /detl;

ss all=(—(c22-k2*pil”~2) *2*xcl0+2+xcl2* (c20+. ..

s betaxP))/detl;

90 Ul=allxsin(2xpixx);

91 U2=al2xsin (2xpix*x);El=cl2xU2+cllxUl+. ..

2 clOxsin (2xpixx);

93 E2=c22xU2+c21*Ul+c20*sin (2*pi*x) ;

94 Mll= (6% (U2-Ul)-Elx (G1l+3%G2)—-. ..

95 2*xE2xG2) / (3xkl* (G1+G2));

96 M2=(6% (U2-Ul)+E2* (G2+3+G1) +. . .

97 2%¥E1*Gl) / (3xk2* (G1+G2));

¢ for il=1:N1

9 if y(il)< 11, ul(il,:)= Ul (:)+M11(:)*(y(il)-0.5).
w0 +E1(:)*Gl* ((y(il)=0.5)"2-1/12);

101 else

102 ul(il,:)= U2(:)+M2(:)*x(y(il)-2)+E2(:)*G2x (0.25%. ..
03 (y(il)-2)"2-1/12);

104 end

105 end

106 Mu2=max (ul (N11, :)); mu2=min (ul (N11,:));

17 Mul=max (max (ul (N11:N1,:)));

18 mul =min (min (ul (N11:N1,:)));

109 MUl=max (Ul);mUl=min (Ul);

10 MU2=max (U2) ;mU2=min (U2) ;

i figure

112 [e,h]=contour (x,y,ul, 20);

13 clabel (c);

14 %Stitle(sprintf ('Av-cont u, Max v=%6.4f, Min v=%6.4f", .
115 Mul,mul)),xlabel('x'),ylabel('y"')

16 title(sprintf ('Av-s, Max v=%6.4f,

17 Min v=%6.4f',Mul,mul)),xlabel('x'),ylabel('y")
us figure,plot (x,ul (N11, :))

19 %title(sprintf ('Av-cont u(x,1), Maxv(ll)=%6.4f,.
120 Minv (11)=%6.4f',Mu2,mu2)),xlabel('x"'),ylabel ('u(ll) ")
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121 title(sprintf ('Av-s u(x,1), Maxv(ll)=%6.4f, .

122 Minv (11)=%6.4f',Mu2,mu2)),xlabel('x'),ylabel ('u(ll)")
123 figure,plot (x,Ul)

124 %title(sprintf ('V1Av-cont , MaxUl=%6.4f, .

125 MinUl1=%6.4f',MUl1, mUl)) , xlabel('x'),ylabel ('Ul")
126 title(sprintf ('V1Av-s , MaxUl=%6.4f, .

127 MinUl=%6.4f',MUl,mUl)),xlabel('x'),ylabel('Ul")
128 figure,plot (x,U2)

129 %title(sprintf ('V2Av-cont , MaxU2=%6.4f, .

130 MinU2=%6.4f',MU2,mU2)),xlabel('x"'),ylabel('U2")
131 title(sprintf ('V2Av-s , MaxU2=%6.4f, .

132 MinU2=%6.4f',MU2,mU2)) ,xlabel('x'),ylabel ('U2")
133 X2=ones (N1, 1) *x; Y2=y*ones (1,M1) ;

134 figure, surfc(X2,Y2,ul),colorbar

135 xlabel('x'), ylabel('y'), zlabel('u')

136 title(sprintf ('VirsmaAv, Max v=...

137 %6.4f, Min v=%6.4f',Mul,mul))

Using the operator DiviP-slani(10,6) and using the diferent finite
difference aproximations of p order (p = 2;4;6;8) we have following
results for maximal and minimal value mu of the solution u,(x,y)

(for the exact and FDSES solution-mu = £0.2401, f>(x,y) = 10sin(27);
mu = +0.7568, f>(x,y) = 10sin(27)S(y —2)) :

1) for f>(x,y) = 10sin(2x),mu = £0.2480(p = 2);+0.2405(p = 4);
+0.2401(p = 6);£0.2401(p = 8),

2) for fo(x,y) = 10sin(27w) 0 (y — 2),mu = £0.7694(p = 2);
+0.7575(p = 4); £0.7569(p = 6); £0.7568(p = 8).

We can see, that the FDSES method is exact.

Prec-nep u, Maxu=0.2446, Minu=-0.2381 LevFDSES-nep , Maxv=0.2446, Minv=-0.2381

Fig. 8.1 Exact solution -cont Fig. 8.2 FDSES solution -cont
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LevFDS-nep , Maxv=0.2521, Minv=-0.2460

Fig. 8.3 FDS solution -cont

Prec-del u, Maxu =0.7596, Minu=-0.7548
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Fig. 8.5 Exact solution -delta

LevFDS-del , Maxv=0.7722, Minv=-0.7674
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Fig. 8.7 FDS solution -delta

LevAv-nep ul, Maxu =0.3406, Minu=-0.3258
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Fig. 8.4 Averaged solution-cont

LevFDSES-del , Maxv=0.7596, Minv=-0.7548
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Fig. 8.6 FDSES solution -delta

LevAv-del u1, Maxu =0.1746, Minu=-0.1643
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Fig. 8.8 Averaged solution-delta

8.10 Formulation of the 3-D diffusion-convection problem

The process of diffusion and convection in z-direction is considered

in 3-D parallelepiped

Q={(x2):0<x<L,0<y<L,0<z<L}.
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Exact-delta u,, Max u=0.7568, Min u=-0.7568

18m =

Fig. 8.9 FDSES solution -delta

FDS—cont u, Max u=0.2480, Min u=-0.2480

3
0453 -0.0453
n.é) %
25 +
p226 0226
2
15

408 408
/i 7;
o 02 04

Fig. 8.11 FDS solution -cont

FDS-delta u , Max u=0.7694, Min u=-0.7694
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Fig. 8.13 FDS solution -delta

Exact-cont u , Max u=0.2401, Min u=-0.2401
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Fig. 8.10 FDSES solution -cont

Av-cont u, Max v=0.4019, Min v=-0.4019
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Fig. 8.12 Averaged solution-cont

Av-delta, Max v=0.3448, Min v=-0.3448
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Fig. 8.14 Averaged solution-delta
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We will consider the nonstationary 3-D problem of the linear diffusion
theory for multilayered piece-wise homogenous materials of N layers

in the z-direction

Qi = {(X,y,Z) tXE (07Lx)7y € (07Ly)7z € (Zifl,Zi)},i :17_]\,7

where H; = z; — z;_ is the height of layer Q;,z0 = 0,zy = L.
We will find the distribution of concentrations ¢; = ¢;(x,y,z,t) in
every layer at the point (x,y,z) € €; and at the time t by solving the
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following 3-D initial-boundary value problem for partial differential
equations (PDEs):

de; dei(x,y, de;
(a_C’:ny(ci)_l_a%(DiZ o th))+rlz8Cz7 -

E(O7Lx)7y€(07L) Ze(Zl*hzl)ate(Ovtf>7i:17N7
19c,~(0,y,z,t) dci(x,0,z,1) 0,
(9 =

dx
dJ
D1 250 — (e (1,3, 0,1) = cuc) =0,

4

Dy 22 4 gy (ci(Ly,y,2,) — Ciar) = 0,i =N, (8.33)

X

Diy%ly‘y’m + (Xiy(Cj(X,Ly,Z,t) - Ciay) = 07l = ra
Dy, 2N | o (e (x,y,Leyt) — az) = O,

Z
rizCi(X,Y,2i,1) = Tig1,2Cit1(X,Y,2iy1),
aCi X, 0,25t aCi 3Y9%0
Diz—(z?)z/Z ) :Di_,_]Z—H(ayZ ) l—l N—l

b}

\ Ci(x,y,ZaO) - CiOai =1 N7

where Ly, (c;) = %(Dlx %fc’) + (%(D,y %C’) a3c; are linear diferential
expressions depending on X,y

Dix,Djy, Di;, iz, ag are the constant coefficients, 0y, Oy, Oz, B;,i = 1,N
are the constant mass transfer coefficients in the 3 kind boundary con-
ditions, cqz, Ciay, Ciax, Coz are the given concentration on the boundary,
tr is the final time, c;o are the given initial concentration. We have fol-
lowing boundary conditions:

1) the homogenous 3-kind conditions by x = L,,y = Ly;z=L;,z=0,
2) the symetrical conditions by x = 0;y = 0,

3) the continues conditions for values r;,c; and the flux functions
D,-Z%—CZ" on the contact lines between the layers, i = 1,N — 1

(for differen r;; the functions ¢; are discontinuos on the contact lines
zi = H;.)

8.11 CAM in z-direction using integral hyperbolic type splines
for 1-D problem

First we will consider following 1-D initial-boundary value problem
in z-direction
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(dui _ 3y du du;
9 = 5 (Dig) i

z€ (zi-1,2i),t € (0,¢7),i =1,N,

DIZM Be(u1(0,1) — uoz) = 0,

Dy M + o (un(Lyyt) — ug;) = 0,6 = 0,15 (8.34)
rizU; (Zut) rit1 Zul+1(zl7t)7

1%@§J—D el TN=T

u;i(z,0) = ujp, i 1,N,

\

where u; = u;(z,t) are the unknown functions in every layer,

D;,,ri; are the constant coefficients, o, 3;,i = 1,N are the constant
mass transfer coefficients.

Using the transformation u;(z,1) = exp(—riyz)vi(z,t),riy = %,z we can
reduced the problem (8.34) to the problem without the convective
term:

4 . 2., .
% = (Diz(aa_z‘;l —rl-zvu,-),z e (Zi,I,ZZ),I € (O,If),l =1,

D1 2220 — 1,01 (0,1) — Be(v1(0,1) — coz) =0,

DNZ%QJZJ) —rNvWN (Lg, 1) + 0 (Vv (Ly, 1) — cazexp(ravLs)) =0,

rizvi(Zi,t) = rig1,2vig1(2is 1) exp((riv — rig1,0)2i),

D 2t) — pyy 2iGal) exp (1, — iy )zg),i = TN
1=

Vi (Z7 0) zoexp(mz) 1_ 0, Iy

(8.35)
In this case we can easy determine the integral spline parameters for
the conservative averaging method (CAM).

8.11.1 Stationary problem

For stationary problem we can obtain analytical solution at every
layer in following form:

vi(z) = m;sinh(r;y,(z — z;%)) + e;cosh(ry (z — z;%)),

where z;*x = (zji—1 +zi) /2.

From BCs and the continuous conditions can be obtain N-linear
algebraic equations for determine the unknown coefficients e;, m;. Us-
ing integral hyperbolic type splines:
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0.5 Hsinh(riy(z —z%)) | cosh(ri(z —zi%)) — A

vilz) =vi,+m - 4 ,
(@) = vie +ms sinh(0.5r,,H;) “ 8sinh?(0.25r,,H;)

| (8.36)
where A; = %m,viz = HL, -1 vi(z)dz are the mean integral val-

ues of v;(z).

Similarly from BCs and the continuous conditions we can determine
the unknown coefficients e;,, m;; depends on the mean integral values
vi; . By using the mean integral values of differential equation we ob-
tain for determine v;; linear algebraic equation in following form:
0.5e;;7iy coth(0.257:,H;) /H; — r2,vi; = 0.

We can see, that the hyperbolic type splines gives exact solution for
the previous boundary-value problem with

L O.5m,-ZHi L ez AL
mi = sinh(0.5r;,H;) yei = 0.125 sinh?(0.25r,,H;)’ Viz = eiA;.

Example 1.
For 2 layers (N=2) we have 4 algebraic equations for determine the
unknown spline parameters m;;, ¢;; depending on vy, vo,,i = 1;2:
z=0:di;m; — ke, —a; (Vlz —0.5m Hy + blzelz) + ﬁ*uoz =0,
z=L;:dyymy, + koer, + az(sz +0.5my,H> + bzzezz) —
a*ugzexp(ryl;) =0,
z=Hy:vi;+0.5m,Hy +by,e|, = a44(V2Z —0.5my,Hy + bzzezz),
z=Hy :dizmi; +kizey; = az3(damo; — kazea;),
where o = (X/Dzz,ﬁ* = ﬁ/Dlz,m = B* +ry,ap = QF —ry,,Dip =
DZZ/D1Z7
diz = O.SriVHiCOth(O.SrivHi),kiz = O.25r,~v COth(O.ZSI’l’VHi),

h(0.5 ivHi —A,‘
biz = 0.125%,&133 = Dlzexp((rlv — rzv)Hl),

aqq = %exp((rlv — FZV)HI )

For two first equations follows my, = (bxey, + ayvi; — bss)/b11,
myp; = (—b44€2Z —azxvy; — b66)/b33, where b11 = dlz —|—0.5H1a1,b22 =
kiz+biza1, bsz =dy; +0.5Hraz,bas = ko, +bozas,bss = B xug;, bes =
ok ugzexp(rayLy).

Using other BCs we obtain two linear algebraic equations for
determine the unknown parameters ey, e>, depending on vy,, vy, :

{Cl€]z+02621:flvlz+fzv22+glla (8 37)

c3e1; — c4e2; = f3viz+ fava + 822,

where c1 = d1;b2/b11 +kiz,c2 = a33(dazbas/b3z + k),
c3 = 0.5H1by/b11 + b1y, ¢4 = a44(0.5Hab44 /b33 + b,
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fi = —diza1/b11, fo = —azzaxdy; /b33,

f3=—0.5Ha; /b1, f4 = a440.5H,a; / b33,

g11 =di;bss/bi1+azzbesdr; /b33, 8220 = 0.5H bss /b1 — aaabes0.5H) / b33.
We have following solutions:

e1; = €11viz +e12ve; +eio, (8.38)
€2, = e21V1z + eV + e,

where e11 = (cafi +caf3)/det,e1n = (cafo+cofa)/det, ey = (c3f1 —
c1f3)/det, e = (c3fo—c1fs)/det,

e10 = (cagi + cag22)/det,ex0 = (c3g11 — c1822)/det det = c4c1 +
€2C3.

By using the mean integral values of differential equation we obtain
for determine v;; linear algebraic equation in following form:

{ (Gle“ — F%V)Vlz‘FGlelZVZz =G, (8.39)

(Gaea1 4 (Grerr — 13,)v2; = Goa,

where G| = 2k, /H\,G> = 2k, /H>,G11 = —G1e19,Ga = —Gaenp.
The solution is

{ viz = (G11(Gaen — r%v) —G2Giey)/dety,

8.40
v2. = (Gn(Grer — r1,) — G11Gaey) /dety (8.40)

where a’et1 = (Gzezz - r%v)(Gw] 1 — F%V) - G2621 G]@]g.

In special case for N=2.L, =3, Hy = 1.8, H, = 1.2,r;, =04,rp, =
0.1, =100, = 1000, ug, = 1,uy; = 10,D1, = 0.2,D,, = 0.1

we have discontinuous solutions with

u1<H1) —uz(Hl) = —7.413,V1 (Hl) —V2(H1) = —9.362,\/12 = 6.347,sz =
33.560(see Fig. 8.15)

If ri;,=0.1,rp, =0.1,D1;, = 0.5,D,,0.1 then we have u-continuous
solutions, v-discontinuous solutions with derivatives and discontin-
uous u-derivatives with uj(H)) — up(Hy) = 0,,vi(H;) — v2(H;) =
—5.605,v1; = 3.150, vy, = 27.036 (see Fig. 8.16).
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m— exact-v
200 m— exact-ul | 40

Fig. 8.15 Exact and spline v,u-solutions for Fig. 8.16 Exact and spline v,u- solutions for
ri; =0.4,r; =0.1 ri; =0.1,r; =0.1

8.11.2 Nonstationary problem

For nonstationary problem (8.35) using integral hyperbolic type
splines (8.36) with v;(z,7),vi;(¢),mi;(t),e;,(t) from BCs and the con-
tinuous conditions we can determine the unknown functions e;,(z),m;,(t)
depends on the mean integral values v;. (7).
By using the mean integral values of PDEs we obtain for determine
vi;(t) linear system of N ODE:s in form:
0.5 ()rivcoth(0.25r:,Hy) /H — r2viz(t) = A 2],

Example 2.
For nonstationary problem in two layers we have the functions
miz, My, €1z,€27,V1z, V2, depending on t and using the equations (8.37,
8.38) we obtain the two ODEs from (8.39) in the following form:

d
(Grenn —r,)viz(t) + Grepava(f) = DLlz Vif,(t) —Gieo,

(8.41)
(Gaeavi(t) + (Gaeay — 13, )vae (1) = D%Zdvift(t) — Gaey.
o (1) (1)
dvi,(t dvy, (t
viz(t) —qi0 = q11 (/= — q12——~,
) D) Wl (8.42)

v2:(t) — 20 = —q21 (= + g2 =5,
where g19 = (—Gie10(Gaex — 13,) + GaexGiren) /det,

2

’ Gaepp—r

q20 = (—Gaea0(Gren1 — r1,) + Gaea1Greyg) /det, g1 = oDy,
. Gle“—r%v _ Giepp _ Goey

422 = gDy, > 912 = GerDs,> 921 = GeiDyy,

det = (Gaexn —13,)(Grer1 —13,) — Gaea1 Giepa.
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The normal system of 2 ODEs with first order is following form:

v (1) (8.43)

D) — vy (1) + dyavac (1) + dho,
=2 = do1vi4(t) +dpava(t) + dao,

_ g2 _ 411 _ 4912 _ i
where di1 = 25 dn = g din = o dot = g

dio = —(g22910 + q12920) /detz, d2o = —(q21910 + q11920) /dety.
In the vector form we have ODEs d‘:i—(f) = Dv+d,, with vector-column
v = [viz,V2;],do = [d10,d20] and matrix D = [dy1,d}2;d>1,dy]. The
solution with homogenous initial conditions is v(t) = (exp(Dt) —
E)D 'dy,
E is unit matrix of second oprder.

In special case for N=2,
v17(0) =v2,(0) = 0,D1; = 0.2,D,, = 0.1,y = 30 we have discontin-
uous solutions with
Vlz(l‘f) = 6.344,\/2Z(l‘f) =33.555, Ml(Hl,l‘f) = 2.47,142(H1,l‘f) =9.88,
vi(Hi,tr) = 14.94,v,(Hy,ty) = 24.30 (see Fig. 8.17, Fig. 8.18)
For comparision we use Matlab routine “pdepe” with u;(Hy,tr) =
2.67,u>(Hy,ty) = *10.01. For this routine the continuous conditions
are approximated with first order differences with space step h=0.1.

v(t,z) u(t,z)

Fig. 8.17 Nonstationary spline v-solution for Fig. 8.18 Nonstationary spline u-solution for
riz=04,r; =0.1 r.=0.4,r.=0.1
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8.12 Reducing 3-D problems to 2-D initial-boundary value
problems

Using transformation ¢; = exp(—riy;2)Vi), Fiv; = ZrD’Z we obtain from
(8.33) following problem:
(v, 9%v;
G = Lay(vi) + Dio (54 — ri vi),
dvi(0,y,z0) _ Ivi(x,0,z,6) 0
5 ox 0 - dy -
PAL20L) — (B + r102) (91 (%,3,0,1) + B o = 0,

Z
av’"(g—w + (0 — ryv)vN (%, Y, Lo t) — 0 cazexp(raL;) = 0,
DAL 4 o (vi(Le,y, 2,1) = CianexP(rine)) = 0,i = TN,
M + o (v,-(x,Ly,z,t) — Cigyexp(rivzz)) = 0,i = 1,N,
rizvl(x V,Ziyt) = ri+1,zVi+l(xa)’aZiat)exp((rivz_ri+l v2)Zi)s
Dizw =Dy z%ﬁmexp«rivz — Fit1v2)%i), 1 =

Z ’ ——

\ Vi(.x,y,Z,O) = CioeXp(risz),i = 17

(8.44)

* ﬁ —_ _a * . Ohix Ol,'y
where B = 5, o = 5, o = pE, 0 = Dy

Using for v;(x,y,z.t),riy = \/Di;riy; CAM with integral hyperbolic
type splines (8.36) for unknown functions v;,;,m;,,e;; depends on
(x,y,7) from BCs and the continuous conditions we can determine
the unknown functions e;;,m;, depends on the mean integral values
functions v;;(x,y,t) . From 3-D PDEs (8.44) we obtain for determine
viz(x,y,t) the system of 2-D initial-value problem in following form:

4 881/;'1 0: [)ny<viz) -|—D,-Z(O.Seizrivzcoth(0.25rwz )/H zvzle)

aviz( A _ aviz(xvoyt) — 0
5 ox dy — Y%
V, ‘X1
Z(ax 2 + aztc("%( XY ) Ciain =0

3V:z( Ly D) +a; (vlz(x L, t) CiayQi =0,

\Viz(x ¥, )—conl, =

(8.45)

exXp(riveZi)—exp(lncliz1 g the intergral averaging values of

Hiriy;

where Q; =

exp(rivzz)-
Similarly ([33], [35], [36], [34]), we can reduced 2-D problems to 1-D
initial-boundary values problems.



Chapter 9
Exact FDS: H. Kalis, S. Rogovs, 2011 [74]

9.1 A mathematical model in the different coordinates

The finite-difference method is used only for solving the obtained 1-
D problems for Poisson’s equations in 3 way coordinates: decart and
curved ( cylindrical and spherical with radial symmetry) . The process
of diffusion is considered in 1-D domain Q = {(x) :xo <x <I},x0=0
or Q = {r:ryp <r <R}, rp>0in the curved coordinates.

The domain 2 consist of multilauer medium. We will consider the
stationary 1-D problem of the linear diffusion theory for multilayered
piece-wise homogenous materials of N layers in the form Q; = {x:
x€ (xi1,x)}or Q= {r:re€(ri_,r)},i=1,N,

where h; = x; — x;_1 or h; = r; — rj_1 is the height of layer Q;xy =
l, ry = R.

We will find the distribution of concentrations u; = u;(x) or u; = u;(r)
in every layer £2; at the point x, r € £2; by solving the following
differential equations (ODE):

.dzui(x)

1d
Di dx2 ] -

du;(r)
o o
pi r%dr

(=) +fi(n =0, O
where p; are constant diffusions cefficients, u; = u;(x),u; = u;(r) — the
concentrations functions,

fi(x), fi(r) - the fixed sours functions in every layer,a = 1,0 = 2 are
the coresponding parameters for cylindrical and spherical coordinates.

The values u; and the flux functions pi% or pi% must be continues

+ fi(x) =0,

on the contact lines between the layers x = x;,r =rj,i=1,N—1:

287
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ui‘x,- = Uj+1 ’x,-7u1|r, Ui+ |r, (9 2)

d”l+l

|"1

du; dujyy
pid_xl|x, Pi+1 =g dx |X,7pl dr |r, Pi+1

where i = 1,N — 1.

We assume that the layered material is bounded above and below
with the surfaces x = 0,x =/ or r = ro,r = R with fixed boundary
conditions in following form:

ui (O) = Ui (r()) = U(), uN(l) = uN(R) = Ua (9.3)

where Uy, U, are given concentration-functions.

9.2 The analytical solutions of the 1-D continuous problems for
Poissan’s equations

The itegration of ODEs (9.1) for every system of coordinates give

piui(x) = =[5 (x—1) fi(t)dt + Ci(x —x;—1) + Bi, X € (xi-1,%;)
piui(r) = — r};—l tln %fi(t)dt +C,-lnﬁ +B;,r € (ri_l , r,'),
piti(r) ==L [T t(r—1)fi(t)dt +C,~(t — D4+ Bi,re (rioy,n)
94)
where the unknown constants C;, B;,i = 1,N can be deternined from
conditions (1.3) and (1.4).
We have following systems of the linear algebraical equations:
1) for Decart coordinates

Ciy1=Ci— [ filx)dx, i=1,N—1,
B; i i =1 N —1
ﬁ—%—,%,.(—fxi (i =) fi(x)dx+ Cihy),i = TN =1, (9.5)

Up = 51 Uq = 3= (= [3 (xn —x) fiv(x)dx+ Cnhy + Bw),

2) for cylindrical coordinates

Ci+1 :Ci_fr:i_lrfi(r)dr’i: 1 N_l

B; [ i i

= f R A0 Gl ) = TN, 06
Up =21y, (=2 rin™ fy(r )dr+cN1n,;71+BN),

P14 py rN-1

3) for spherical coordinates
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Cir1 =Ci— [t r*fi(r)dri=1,N—1,

ﬁj_ﬁ_l;; —Ilz( rllfr’;l,l (rl_r)fl( )dr—i—C(L_rll) 7i: 17N_17

Up =5 Us = o (=7 [ r(ry —r) f(r)dr+Cn(5= — 1) +By).
9.7)

On the contact lines between the layers u;(r;) = uj1(r;) = Bini =

—_— Pi+1’
LN_1.
We sonsider the example in two layers (N = 2) with following data:
Up=U,=0,p1=1,pp=2x1=20=1=4rn=1rn=2n=
R=4,f1(x) = fa(x) =56(x—x1), fi(r) = fa(r) =58(r—ry).
Here 6 (x — x.) is the Dirax delta function concentrated in the point x
or the

hmg(x X, €) = O(x —xy),

e—0
where the function g(x,x.,€) = 5 in the segment [x, — €,x. + €] and
equal to zero outside this segment. It is obviously that the integral
I(x,) = fabf(x)S(x—x*)dx is equal to I(x.) = f(x.) for x, € [a,D],
I(xy) = 0.5f(x,) for x, = a or x, = b and I(x,) = 0 for x, outside the
segment |a, b|.
We have following results:
1) for decart coordinates B =0;C, = % C, = —g;Bz = %;ul(xl) =
ur(x1) = 25 up (x) = 3x,x € [0,2]su2(x) = 3 (4 —x),x € [2,4],
2) for cylindrica coordinates B = 0;C| = ?0 C = —%;Bz = ?ln(Z);
ul(rl)—uz(rl) loln(Z);ul( ) loln( ) € [1,2];
up(r) = 13—01n(r),r € [2,4],
3) for spherical coordinates B; = 0;Cy =4;C, = —6;By = 4;u(r)) =
wr(r) =2;u1(r) =4(1 = 1), r € [1,2);u2(r) =2(% — 1),r € [2,4].

9.3 The analytical solutios of the continuous problems for 1-D
general equations

Similarly we can consider the ODEs with other terms

d?u;(x) B 2a,~dui(x)

P G T4 =0 08
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where a;,q; are constant parameters, We consider the boundary con-
dition of symmetry d”N ( ) =0,

The equation (9.8) w1th the transformation u;(x) = exp(b;(x —x;—1)vi(x),
v1(0) = Uy, dVN( ) + byvy (1) = 0 we can use reduced in the following

form )
d ;)zch) _ KiZVi(X) + exp(—bix)f,-(x)/pi =0, (9.9)

where b; = %, K} = A2 +b? A =4
Integrating ODEs (9.9) give

vi(x) = —ﬁ ;;71 sinh(Ki((x—t))eXp(—b,-(t —xl;l)f,'(l‘)dl‘—f—
%sinh(l{i(x —xi—1))+Bicosh(Kki(x —xi_1)),x € (x;—1,%;)

(9.10)
where the unknown constants C;, B;,i = 1,N can be deternined from
conditions (1.3) and (1.4).

We have following systems of the linear algebraical equations:

Pi+1(Civ1 +biv1) = pi(exp(bihi)(Cicosh(iih;) + K;B;sinh(k;h;) ) —
Joi cosh(k;(x; — x)) exp(—bi(x — x;—1) fi(x)dx) +biBit1),i = 1,N — 1,
Bk = (—I%i or sinh(K;(x; — x)) exp(—b;(x —x;—1) fi(x)dx+
G Sil’lh(K’lh ) + KlBiCOSh(Kihi)) exp(bihi),i =1,N—-1,
Up = By, ix( plN o sinh(ky (xy —x)) exp(—by (x —xy—1) fv (x)dx+
Cn SlIlh(KNhN) + BNy Ky COSh(KNhN)> +Cn COSh(KNhN) + BN Ky sinh(KNhN)—
_PLN ;1\1/\,71 COSh(KN(xN —x)) exp(—bN(x —fol)fN()de =0.

(9.11)
We have following results for N = 2 (preliminary example with

J1(x) =0, f2(x) =56(x—3),p1 = 1(B1 =0):

uy(x) = exp(brx) g G Lsinh(kx),x € [0,2],
up (x) = exp(by(x — 2))(C2 sinh(xa(x —2)) + By cosh(xa (x —2)),x € [2,3],
up(x) = exp(ba(x —2)) (32 sinh(x (x — 2)) + By cosh(k (x — 2)),
_1% sinh (K (x — 3))exp( 2)),x € [3,4],
(9.12)

cosh(2ky) |, by—paby smh(21<1)
st )(cosh(2K»)+

by SinthZ)) + mh(ZK') (kr smh(ZKz) —i— by cosh(2xy)),
C) = (exp(—2b; — bz)) (cosh(Kz) +s1nh(1<2) ))/cl

where ¢l = (
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Gy = exp(lzfz’l)cl (COSh(ZK’l) + (bl P2b2) smh( ))7

Bz = C1 %12’(1) exp(2b1).

Using the preliminary example for N = 2 we consider following pa-
rameters (p; = 1,py = 10) :

1)x; = k» = 0— piecwise linear solution u;(2) = 10,

a) = —1.5,612 :2,q1 = l,qZ :O.l,p1 = 1,p2 = 10, K1 = 1.803, Ky =
0.224,u,(4) = 8.00.

The solutions are represented in the Fig. 9.1.

9.4 The exact FDS-method

For solving 1-D problems we consider the grid points equal with the
contact lines between the layers x = x;,r = r;,i = 1,N — 1, two end
points xg = 0,xy = [,rg = R and the steps A;.

The exact finite difference scheme (FDS) in the Decart coordinates we
can represented in following form [3]:

i1 (i1 — u;) —ai(ui—ui_l) =—(F +F"),i=1,N—1,

F = )?ﬁi_l( azf ) ()dx
B = [0 (1 g [t (e
For the curved coordinates the functions f;(r) are multiply with r*. In

the case of piecewise coefficients p; we have following formulas:
1) for Decart coordinates

(9.13)

L — _Pi Pi+1
ai = xl_xl 1’ dit1 = Xit1—Xi’
Foo= o [ (x—xi1) fi(x)dx, (9.14)

FijL = m f;lﬂ (Xir1 —x) fiy1(x)dx,

2) for cylindrical coordinates

a; = __Pi g | = Pi+1
ln(ri/rilfl)’ H; In(rit/r;)’
F = Wfriil rin(r/ri—y) fi(r)dr, (9.15)

F = i 50 PR (rig /1) g (F)dr,

1

3) for spherical coordinates
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o pititin o pisififisl
Gi= (ril*lrzl'fl)’a”rl - (lri+1l*lri) ’

— T i
Fi+ = r,._rﬁfrri; r(r—riz1) fi(r)dr, (9.16)
F= T'_rl.fr,-’+1 r(rig1 —r) fiv1(r)dr.

The FDS can be solved by Thomas algorithm ([15]). In the prelimi-
nary example for N = 2 we have following results:

1) for decart coordinates a; = 0.5;a; = 1;F] = Ffr =2.5u =
u(xy) =10/3,

2) for cylindrica coordinates a; = 1/1n(2);a, =2/In(2); F| = F;" =
5;u; = u(r;) =101In(2)/3,

3) for spherical coordinates a; = 2;a; = 8;F] = F1+ = 10;u; =
u(ry) =2.

We can see, that the values on the contact lines are identy in the con-
tinuously and discrete case.

1 D distribution

Fig. 9.1 2 solutions u(x)



Chapter 10

CAM: 1. Kangro, H. Kalis, E. Teirumnieka, E.
Teirumnieks, 2011 [31]

The task of sufficient accuracy numerical simulation of quick solution
3-D problems for mathematical physics in multi-layered media is im-
portant in the known areas of the applied sciences. With regard to the
numerical analysis several numerical methods are known for solving
3-D problems: FEM, BEM, ADM, spectral methods, multigrids and
others methods.
For simple engineering calculations two methods are applied [30],
[12]: special finite difference scheme and conservative averaging method
(CAM) by using special integral hyperbolic type splines with two pa-
rameters in every layer. We chose the CAM for engineering calcula-
tion and the solution of 3-D problem can be obtained analytically.
We consider C AM for solving the 3-D boundary-value problem in
multilayer domain. A specific feature of these problems is that it is
necessary to solve the 3-D initial-boundary-value problems of second
order with piece-wise parameters in multilayer domain.
The special exponential and hyperbolic type integral splines, which
interpolation middle integral values of piece-wise smooth functions,
are considered. These functions contain the independent solutions of
coresponding homogeneous linear ODEs with parameters-characteristic
values. With the help of this splines is reduce the problems of math-
ematical physics in 3-D with piece-wise coefficients to respect one
coordinate to problems for system of equations in 2-D. This proce-
dure allows to reduce also the 2-D problem to a 1-D problems and the
solution of the aproximated problem can be obtained anlytically.

The solution of corresponding averaged 2-D initial-boundary value
problem is obtained also numerically, using for approach differential

293
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equations the discretization in space applying the differences. This
method may be considered as a generalization of the method of finite
volumes for the layered systems. In the case of constant piece-wise
coefficients we obtain the exact discrete approximation of steady-state
1-D boundary-value problem. The approximation of the 2-D nonsta-
tionary problem is based on the implicid finite-difference and alter-
nating direction (ADI) methods. The numerical solution is compared
with the analytical solution.

10.1 Formulation of 3-D problem of the process of diffusion

The process of diffusion is consider in 3-D parallelepiped
Q={(x,52):0<x<L,0<y<L,0<z< L}

The domain 2 consist of multilayer medium.

We will consider the nonstationary 3-D problem of the linear
diffusion theory for multilayered piece-wise homogenous materials of
N layers in the domain

Qi ={(x,y,2) :x€ (0,Ly),y € (0,Ly),z € (zi=1,2:) },i = 1,N,

where H; = z; — z;— is the height of layer ;,z0 = 0,zy = L.

We will find the distribution of concentrations ¢; = ¢;(x,y,z,¢) in
every layer €; at the point (x,y,z) € €; and at the time t by solving
the following 3-D initial-boundary value problem for partial differen-
tial equation (PDE):



10.1 Formulation of 3-D problem of the process of diffusion 295
IV G
J CilX,y.2,t dJ CilX,y,2,0
a_y(Dlya—y) + a_z(Dlza—Z) +fi(x7)’,2;t)7
X e (07Lx)7y S (07Ly)7z S (Zi—hzi)vt S (07tf)7i =L,N,
86’1‘(07%2,1‘) — 8(‘5()5,0,2,[) — 0
d - dy -

;
Dy 20 B (e (x,y,0,1) — coz(x,y)) =0,

Dy 2ley2) o gy (¢i(Layys2,1) = Cian(9,2) = 0,i = LN, (10.1)
Dy %520 gy (e, Ly, 2,1) — Ciay(x.2) = 0,i = TN,
Dy, 22U 4o (e (x,y,Le, ) — Caz(x,)) =0,
ci(X,y,2i,t) = ciy1(x,y,2i51),

Dizaci(g?zi:t) = Disy 9c,-+1(5c;y7a,t)7i —TN_1

\ C,'(x,y,z, 0) = Ci()(x7yaz)7i: la_Na

’

where ¢; = ¢;(x,y,z,t) are the concentrations functions in every layer,
fi(x,y,z,t) - the fixed sours functions,

Dijx,Djy,D;; are the constant diffusion coefficients, 0y, 0y, 0, B;,i =
1, N are the constant mass transfer coefficients for the 3 kind boundary
conditions, ¢4z, Ciay, Ciax, Coz are the given concentration on the
boundary, # is the final time, cjo(x,y,z) are the given initial concen-
tration.

We have following boundary conditions:

1) the homogenous 3-kind conditions by x = L,y =L,;z=L;,z =0,
2) the symetrical conditions by x = 0;y = 0. The values ¢; and the flux

functions Diz‘g—czi must be continues on the contact lines between the

layers,i=1,N—1.

10.1.1 The averaged method in z-direction

Using averaged method with respect to z or hiperbolic trigonomet-
ric functions 0.5 H sinh B
Ci (x7y7 <, t) = Ciz (xaya t) + miz(x7y7 t) : sifnsﬁl(l().(sa;fé?)a)) +

inh?(a0;(z—7%
H,

where CiZ(xayat) = Hllfzzlil C,‘(X,y,Z,t)dZ,GiZ = D_llzv

Awp; = 0.25 PRI € [0,1/12],
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%= (zi-1+2)/2,2 € [zi-1,2],i = L,N.

We can see that the parameters a; > 0,a0; > 0 tend to zero then
the limit is the integral parabolic spline (A. Buikis [9]), because
AiOz — 1—12 :

C,‘(X,y,Z,t) = ciz(xay7t) +miz(x7y7t)(z_z_i) +eiz(x7yat)GiZ< (Z;]ZZI)Z B é)
The unknown functions m;;(x,y,1), ei;(x,y,t), we can determined from
boundary conditions (10.1) in z-direction:

1) for z=0 ,d{,D1,m; —dOy,e, — ﬁz(clz —0.5m,H +e1,G1;A11; —

COZ) = 07
2) for z=L,,dy.Dn.my;+dOnzen; + o (cn; +0.5my . Hy + en.GnAn1; —
Caz) =0,

3)for z= z;, ¢i; + 0.5m; H; + €;;GizAj1; =

Cit1,z—0.5mip1 Hiv1 +eiv1:.Git1Ai1,12,

dizDizmi; +dO;zei; = diy1 :Div1mit1;— dOiy z€iv1 i =1,N—1,
where

di; = 0.5H;a; COth(O.Sa,'H,') —1,d0;, = 0.5H;a0; COth(O.SaOiHi) — 1,
Aj; =025—A, €[1/6,1/4] and Ay, — % if a0; — 0.

From conditions on the contact lines by z = z;,i = 1,N — 1 excluding
mi1 ; follows:

mi:Dir(Giz; + Giy1:Kir) + €i:(2Gi:A; 12 + K0;;Giy1 7))+

d0it1,
€ir1:Gir1:(Z = = 2Ai112) = 2(Cip12 — ciz),

) do;;
where ;= 79, k0, = %

From conditions on the contact lines by z = z;_1,i = 2,N excluding
m;_1 ; follows:
mi:Dir(Giz+ Gi1:K ) — €iz(2GiAi 1.+ K| Gi1.;)—

1,z
do
ei—1.Gi- l,z(dlll —2A; 112) 2(CZZ Ci— lz)

Excluding m;, we obtain for determined ¢;, following system of N —2
algebraic equations a; je;; +a;j11€iy1;+aji-1€i-1; =

biiciz +bijt1¢iv1z+bij—1¢i-12,0=2,N—1,

where a;; = (Gi; + Gi—1 ;K )(2GiA;i 1.+

1,z

1KOiZGi+1.,z) + (GZZ + G1+1,thz)<2GzzAl 1z+ KO, 1. ZGifl.,Z)a
)

d0; 1, -1
L _2Ai+1 1z ( zz+Gl LzK )7

aiji+1 = Gi—i—Lz( dir1. 1,z
d0;_1 ;

aii-1 = Gio1(F = . —2A; 117)(Giz + Giy1.Kir).
bii = —(bit1 +bl,l—1)7bi7i+1 =2(Giz+Gi1 .k ibiic1 =2(Gi+
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Gi+1,zKiz)-

From boundary conditions by z = 0,z = L, and previous expresions
by i =1 and i = N excluding m,,my, follows:

aiei;+ayper; = byci;+ by a0, +boicoy,

an.Nen;+anN-—1eN—1; = by Ncn: +byn—1cN-1 2+ bonCaz,

where

ar = (2G1A11:+K1:G2.)(d1;+0.5B,G1;) +(G1: + K1:G2 ) ((d01 .+
ﬁz i lzGlz)

aijp =Gy z( —2A; lz)(dlz +0.5B;G1.),

by = _(z(dlz + 0.5B:G12) + B:(G1z + K1:G2.2)),

b1 =2(d1;+0.58:G1z), bo1 = B:(G1. + k1:G2,),

aN.N = (ZGNZANIZ + K]\?iLZGNfl,z) (sz + O-SazGNz)+

(GNZ + KﬁllzGN—l ,z) ((dONz + O‘ZGNZAN,IZ)»

A0y,
aNN—1 = GN*LZ( dA[/Vfll,z‘ _2AN71,12)(sz+0-5azGNz)7

byN = —(2(dn; +0.50:Gp;) + 0 (G + KﬁlLZGNfl,z)),
byN-1=2(dn;+0.50,Gy;), boy = 0t;(Gn; + KﬁiLZGN—l,z)-

Using the obtained values a; j,b; j,i,j = 1,N we can determine the
3-diagonal N-order matrices A;, B, with these elements, N-order di-
agonal matrix By with the elements [bg;,0,0,...0,bgy], the N-order
vectors-column e, ¢, with the elements e;;, ¢;; and the N-order vector-
column ¢y with the elements [cq;, 0,0, ...0,c4.]. Then we have the sys-
tem of N algebraic equations in following vector form

d01+l z

AZeZ(xayat) = BZCZ(x7y7t) +B()C0(X,y)-

The matrix A; is diagonal dominant and we can the unique solution
write in the form
e;(x,y,t) =Byc.(x,y,t)+By.co(x,y), where By, :AngZ,BzZ :AZ’IBO.
Now the initial-boundary value 2D problem is in the form

aiZ77 — ai:77 81277
% o %(Dix : (g/;y'j))—i_gy(D . ( o ))+dhlzelz(x Y )+ﬁz(x7y7t)a

aCiz(O,y,l) — 8c,~z(x,0,t) — 0
dx d -

y
a 17 ‘X1 s
\ Dtx—c (a > )+alx(ctz(anya ) C; x)(y):()v
a‘i L y
D, il lt) (gy>f)+a,y<c,z(x Ly,1) — ¢y (x) =0,

)
CiZ(X,y,O) - Clz,O(x7y)7 ( )7 € (07 )7t € (07tf)ai: 1aN7

(10.2)

3
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where dh;, = %,
ﬁz('x7y7 ) = ﬁ('x y7Z7 )dz7 lax) (y) = [—II Zzli czax(% )dz?
C:‘/ay) (x) H; szl 1clay(x Z)dZ, Ciz, O(X y) H; fZZl 1C10(x ¥z )dZ
We can determine the diagonal N-order matrices Dy, Dy, i, 0, Dh;

with the corresponding elements
Dy, Dy, aix, Oy, dh;; and the N-order vectors-column

f2(xp,0), ¢y (x) Cax) (V)5 €20
with the elements Jiz(3,3,1), €1 (%), €1 ) (9), €z, 0 (%, 7).

Yriax

Then we have the initial-boundary value 2-D problem (10.2) in vector
form:
aCZ(a’y’ . ( acz aya )) _|_ i(D acz( XY, ))_|_

- dy dy
az077 az 707 N
D <Blzcz< x,, >+BZZco<x V) + £l yr), 2gtl — 2eldd) — o,

DG b an(ex(Leyy,) =€) () =0,
Dyw+ocy(cz(x Ly,t) —cby(x) =0,
Cz(x y70) - CZ,O(X y) (0 L ) ye (07Ly)7l € (07tf)

(10.3)

10.1.2 The averaged method in y-direction

Using averaged method with respect to y
ciy(x,1) = I, f() Ciz (%, Y, 1)dy,
0.5Ly sinh(a; (y—0.5L
Ciz (X, y,1) = Cty(xat) +mly(x7t) )ssjlrrllh((()a,s(ziLy) Y))+

12
. (1 sinh*(a0;(y—0.5Ly))
eiy(x,1)Giy (5 sinh®(0.540,L, —Ainy);

with the unknown functions m;y(x,t),e;,(x,¢), we can determined
these functions from boundary conditions (10.2) in following form:

Diydiymiy(x7t> = doiyeiy<x7t)»eiy = _biy(ciy(xat) - C}}ay(x)>7
where b,'y = (Xiy/(ainiy(O.S% —|—A,'7]y) -+ Zd()iy), A,‘]y =0.25 —Ai()y),

o (sinh(a0;Ly))/(a0;Ly)—1
AlOy =025 cosh(a0;Ly)— 1) ’

d,'y = 0.5Lyal~coth(0.5Lyal~), Gl'y = {;—fv,dol‘y = O.SLyaOi COth(O.SLyaO,').
Then the initial-boundary value problem (10.3) is in following form
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dey(xt ] dey(x,t
cy(xt) — Q_(Dx cy(x ))_

dt dx
DhyBy(cy(x,t) — ¢y (x)) + Dhy(Bicy(x,t) + Bazcy(x)) + fy(x, 1),
24040 _ ¢ p, W_i_ax(cy L., ) ) =0,

(
cy(x,0) = cy0(x),x € (0,Ly),1 € (0,1¢),
(10.4)

where Dhy, By are the N-order diagonal matrices with the elements

2d0;y
y‘ biy, cy, fy are the N-order vectors-column with the elements

Ciy, fiys co( x) is the N- order vector-column with 2 nonzeros elements
L)kl ) = L ful, ey
Cy ( )= L f() Caz(X,y)dy, ¢y (x) = I, fo Coz(X,y)dy,

= et )y, () = - i ccolxy)dy.

10.1.3 The averaged method in x-direction

Itis p0551ble make the averaging also with respect to x

cix(t) = - fo ciy(x,t)dx,
0.5 X inh i —0.5 X

iy (1) = un() -+ myy (1) 23Sl 0L

1 sinh?(a0;(x—0.5Ly))
eiXGiX(Z sinh? (0.5a0;Ly — Aiox),
with the unknown functions m;y(t),e;(t). We can determined these
functions from boundary conditions (10.4) in following form:
Diydixmiy = dOjyeiy, ey = bix(cix(t) - C;{;x%

where by = 0t/ (04xGix (0.5% +A; 1) +2d0), Aj 1x = 0.25 — Aoy,

_ 0.5 sinh(a0,Le))/(a0iLy) 1
Ajox =0.25 sin Eish(a)oi/LES*I ,

dix =0.5Lya;coth(0.5La;),Gix = é ,d0jx = 0.5Lya0; coth(0.5L,a0;).
Then the initial-boundary value problem (1.14) is in the following
form:

93@: —DhBx(cx(1) — ) — DhyBy(cx(t) — cip)+
Dh,(Bycx(t) + Bazel?) + fx(1), (10.5)
cx(0) = cx 0,1 € (0,t7),

where Dhy, B, are the N-order diagonal matrices with the elements
z‘zof",bix, Cx, fx are the N-order vectors-column with the elements
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c,-x, ﬁx, ¢y 1s the N-order vector-column with 2 nonzeros elements
Cobs it x(t) = Lifo*fy@c 1
Cx,0 = Efo Cy,O( x)dx, Cuz =L fo az( x)dx, C =L fo Coz( x)dx,
Therefore we have from (10 5) the initial problem for the system of
N ODEs of the first order. The solutions of this system can be with
classical methods obtained . For the averaged stationary solution (f;
is constant vector) follows the analytical solution in the form

cx = (DhyBy+DhyB,—Dh.B1;)"~ (fx—i—Dh Bycyy+DhyBycyy +Dh:By.cy’).

10.1.4 Domain with homogenous material, one layer

For N=i=1 the unknown functions m_(x,y,t),e.(x,y,t), are determined
from boundary conditions by z =0,z =L, :
d.D;m; —d0e; — f:(c; — 0.5m;L; + e:G A1, — cor) =0,
d:D;m;+d0.e; + o (c; +0.5m;L; + e,GA1; — caz) = 0,
where mz(x7y7t) = (BZaZZ(CZ<x7y7t) _Coz(x’yat» + (Xza12<—CZ(X,y,t) +
Caz(x7y’t)))/detv
ez(%,y,1) = = (x,3,1) 8z + Caz(X.y)az + Cor (%, )by,
g: = (an 0 +ax fB;)/det,a; = ozayy /det,b, = Braz; /det,
det = ayax +aaz,ay =d; D, +0. SﬁZLZ,azl d.D,+0.50,L;,
ay = d0;+ B, G:A1;, a0 = dO; + a;GA1;, G, = L; /Dy,

The initial-boundary value 2D problem is in followmg form
2 aozgx,y,z) . i(Dx acz((;;y,t) >+

a%,(Dy 2 ) —Bzgzcz(x,y,t) +fz(x7)’al) +Bz(azcaz(xv)’> +bZCOZ(x'y>)7

Ge01) . dex(x0r) _ g
ety
2(Lx,Y,
D “(axy” Faufes(Lonr) ~ch)0) =0,
8chLy

L cz(x, )’:O) = czo(x, )’)
(10.6)

L,
where B, = 2d0, /L, c},,)(y) = LLZIO cax(y,2)dz,
c:zy)(x) = L_Zf() 'Cay(xaz)dz'
Using averaged method with respect to y
with the unknown functions my(x,t),ey(x,t), we can determine this
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functions from boundary conditions
Dydymy(x,1) = dOyey(x,1), ey = —by(cy(x,1) — ¢z (x)).
Then the initial-boundary value problem (10.6) is in following form

ot~ Jx
(9B + by By )y (5,1)+ £y (6 + Bl () by (1) + Bybyciy,

dcy(0,t a\Lx,
%&)—OD e(let) 4 gy (ey(Luyt) —€22) =0,

¢y(x,0) = ¢yo(x 0.

dey(x,t) P} (D 8c)a(x ) )

(10.7)
where

Ly
B, = 2d0y/Ly, Gy = Ly/Dyv CZz( ) = Li fOV CGZ(x7y)dya
cbo(0) = 1= Jo? corlx,¥)dy, el = £ 57 che(v)dy,

cyo(¥) = £ Jo” e-0(x,y)dy.

Make the averaging also respect to x
with the unknown functions my(t),e,(t), we can determined this func-
tions from boundary conditions (10.7) D.dym,(t) = dOye,(1),ey
—bx(cx(r) —cy)-
Then the initial-boundary value problem (10.7) or the initial problem
for ODEs of the first order is in following form

‘9“,“ — —(B.g. + Byby + Bibo)exlt) + fult)+
B (azcy; +bycyy) + Bybycyy, + Bibycyy, (10.8)
Cx( ) = Cx,0,

where
By =2d0,/Ly,G, = Ly/Dy,c)} = I fo ch.(x)dx,
Ly
(‘32 L1 0 Cg)z( )dx'
The solution of this problem is

ed(t) = exp(—y)exo+ / exp(—y(t—ENF(E)E,  (10.9)
0

where fi(t) = fi(t) + B;(a;cl¥ + b.cly) + Bybycyy + Bybxcyy,
Y = B.g; + Byby + Byby.
For the averaged stationary solution follows the formula
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i
Cx="—

Y

and we have the analytical solution for c(x,y,z).
We can obtain also the stationary solution c¢(x) = ¢y (x) from (10.7)
by solving the boundary-value problem for ODEs of second order

c(x) —alc( ) +8(x) =0,¢'(0) = 0,Dxc (L) + o(c(Ly) — Cp)) =0,
where al (g:B: +byBy) /Dy, g(x ) (fy(x) + Bz (azcy (x)+
bz (x)) + Bybycyy(x )/DssCo—
Then c(x) = C; cosh(alx) — Iﬁ f(f sinh(a1 (x—1)g(7)dr,
= (g Jibxsinh(ay (Ly — 7)g(t)d T+ 0,Co) /
(Dxal s1nh(a1L )+ accosh(aLy)).
If g(x) = const, then c(x) = Cy cosh(ajx) + %,

C = OCX(C() — L%)/(Dxal sinh(ale) + O COSh(ale)).

10.1.5 Analytical model for estimating the parameters a, a0

We consider the special 1-D diffusion problem in the z -direction for
f=FOcos(7) cos(%)

o = 0y = 0, ¢q(x,y) = Cgc08( )cos(Li)

coz(x,y) = Cocos(F )cos( ) Then the stationary solution of (10.1)

is in the form c(x,y,z) = (z) cos(Z; ) cos(P i Y, where the function c(z)
is solution for following boundary value problem:

D, %% _ B,(c(0) — Co) =0, (10.10)
D, 863[;) + o (c(L;) —Ca) =0,

where b =1, /(D )/DZ,fO

Therefore the exact solutlon 1s

¢(z) = Py sinh(bz) + P> cosh(bz) + f;?,

where the constants P, = ﬁ < (P> + —Cy),
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Py = 0.(Ca— 13) + B(Co — £3)(cosh(bL;) + ot sinh(bL.) /(bD))/
(cosh(bL;)(a + B;) + sinh(bL.) (bD: + ./ (bDy))).

The averaged values are

&=L 7 e(z)dz = 75 (Pi(cosh(bL;) — 1) + Pysinh(bL)) + 1.
This form of solution remained also for discrete aproximation
c(zj),zj = jh,h= %, j =0, N by using exact finite difference scheme
(FDS) from N. Bahvalov [30]. Then from first order of approximation
the boundary conditions are

Py = (—bab11 +b3byy)/det, Py = (bsb1z — b3byy) /det,det = by1by —
b12byy,

where by = cosh(bh) — by, by, = sinh(bh),

by = cosh(b(L, —h)) — by cosh(bL,),

by, = sinh(b(L, — h)) — by sinh(bL;), by = 1+ hf,/D,,

by = 14 ho/D;,by = h;/Do(Co— 13),ba = ha/D;(Ca— 13).

For comparision we use the averaged method respect to z with ex-
ponential spline. Then ¢” = (B,(a,C, + b,Co) + F0)/(B.g, + D.b?),
e; = —c"g; +Cua; + Cob,,

m; = (B.axn(c”" —Co) + ozain(—c"+Cy,))/det.

We have following numerical results

(FO=0,L,=1,Ly,=1,L, =1,y =0.3,C, =2.0,D, = 1073, D, =
Dy = 3.107%,b = 2.4335) for maximal error and averaged values de-
pending on a,a0, ¢, B;. The numerical results are given in the Table
eftab:10.1 (a=a0=0 for parabolic spline). In Fig 10.1 is represented the
solution ¢(z) for 4 methods (N = 20, o, = 20, B, = 0,a = a0 = 2.3 for
FDS 6 = 0.0222, for a=b, a0=b/2 follows 6 = 0.)

For L, = 3,F0 = 0.1,b = 2.4335 follows: ¢,, = 23.14, ¢, =
16.87,8 = 6.27 (for parabolic spline), c;,, = 16.87, ¢, = 16.87,6 =0
(for exponential type spline with a=b, a0=b/2.)

For exponential spline with 2 parameters a = b,a0 = b/2 we

have exact solution for every values of the parameters
LZ7F07b7DZ7C07Ca7 a7B'

10.1.6 The numerical approximations for the 2-D problem,one
layer

We use uniform grid in the space (M +1) x (N+1)) :
{<yi7xj)a Yi = (l_ l)hya Xj = (]_ 1)hx}7l = 17M+ 17 J: 17N+17
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Table 10.1 The maximal error & and averaged values depending on a for o, B;, cy,-exact, ¢y, -
approx)

o |B:la |a0 |0 Cop  |Con
2 1110 |0 ]0.092|0.769|0.792
- |- 10.5/0.5]|0.084(0.802
- |- 11.0]1.0/0.062|0.785|-
- |- 1.4/1.4]0.050(0.791
- |- |1.5]1.5/0.050(0.802|-
- |- |b |b/2]0.0 [0.792(0.792
2 1010 [0 [0.339(0.672|0.808
- |- 11.3]1.3]0.243(0.727 |-
- |- 12.0]2.0|0.134|0.791 |-
- |- 12.5(2.5]0.088(0.843
- |- 12.3]2.3]0.0810.822|-
- |- |b [b/2]0.0 [0.808(0.808
20/0 |0 [0 [0.339(0.672|0.809
- [~ 12.3]2.3]0.081{0.823(-
- |- |b [b/2[0.0 [0.809(0.809

Concentration c=c(z),Dz=0.0010 Levels of Ca, MaxCa=4.6312, MinCa=2.4055

2 1 - : . oo g4
& ey
185 4 0.941.5‘1‘2 423 3
" 62 4.02 T 382
161 = analytic solution 1 08l # A+ — ]
quadratic spline P A \
141 exponential spline 4 07F I B
- = =FDS /
120 g 06f 1
o 1t %’ B x 05F \ 3
08 . @ 1 04r f
. 2 .
(4
06f i 4 03t 9
7" . ~__ -

04f o == v, . ] 02 T s ﬁ.eé
02 Lo g 0.1 382 42

NP ‘ ‘ ‘ o Bepepo2Re2 262 ‘ 82
0 0.2 0.4 0.6 08 1 0 02 0.4 06 08 1

z y
Fig. 10.1 Solution c(z)for o; =20, 5, =0,a = Fig. 10.2 Levels of concentration from inter-
2.3 polationby z=L; =3

Mhy = Ly,Nhx = Ly.
For the time t we use the moments #, = nT,n = 0,1,---. Subscripts
(i, j,n) refer to y,x,t indices with the mesh spacing and for
approximation the function c,(x,y,t) we have the grid function with
values U/; & cz(x;yi tn)-

For solving 2D problem (1.13) we use the discrete approximation
in the form
U =Um) 1= (AAH AU 4+ 17,0 2 0,i=TN+1,j =T,M+1
and ADI method of Douglas and Rachford (1955)
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(U0 =Ul) )t = AU + AU + f1,i=2,N, j =2,

(Ui’jj—'i_]_Ulil]—'i_O‘S)/r_ (Un+]_Un) i=2,N,j=1M+1.

Elimate the half time step ¢, ¢ 5 we obtain the previous discrete prob-
lem with approximation error O(7?). Here A,, A, are the discrete dif-
ference operators, approximated second order derivatives

a 3
%(D c((a > )) BZgZCZ(x7y7t)7

(%(D dcelx gyy 1)) respect to x and y and boundary conditions with

central differences, f1'; = f;(xj,yi,tn) +Bz(azcaz (x), i) +bzcoz(x;, yi)).-
We use following discrete operators:

AU j = Dy82U; j— B:g:Ui j, AUy j = Dy8JU; ji=2,N, j =2, M.
where 5sz,'7j = #(UEH‘] —2Ui7j—|—Ui_‘j_1), 5),2U,'7j = #(Uiﬂ.,j —2U,'7j—|—
Ui—1,j)-

For solving U9 and U"*! we use Tomas algorithm in x and y di-
rections respectively. We can write the 3-point difference equation at
every direction in following form:

AUy—1 — U+ ByUy 1| = F,k = 2,K,
QU +B Uy =F,j=1, (10.11)
Ag+1Uk — Ck 41Uk 41 = Fg1,k= K+ 1,

where

Ci=B =1,F = OCK+1—1—|— AK+1=1,Fgy = Ca,
k=iorj,K=MorN,h= hxorhyD D, or Dy,o0 = Otx or 0.
Using the Tomass algorithm we have:

Ui = XkUiy1 + Zi, k= K(—=1)1,

_ B _ B AAZi— _ A T
where X = d_k’Zk = d—k’dk =C,—ArXj_1,k=2,K+1,
X; = ¢,7Z1 = & Uk 1 = Zgo1.

We have following coefficients in (10.11):
Ay =B, = hz,Ck—l/T—f—Z +5BZgZ,Fk U]?/T—I—AyU]?—i—f]?
or F = U"*OS/T AU

10.2 Some numerical results

We consider the metal concentration in the peat block. The layered
peats block are modelled in [32], [31]. On the top of earth (z = L;) the
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concentration c[7¥] of metals is measured in following nine points in

the (x,y) plane:

¢(0.1,0.2) =3.69,¢(0.5,0.2) = 4.43,¢(0.9,0.2) = 3.72,¢(0.1,0.5) =
4.00,¢(0.5,0.5) =4.63,¢(0.9,0.5) =4.11,¢(0.1,0.8) =3.71,¢(0.5,0.8) =
4.50,¢(0.9,0.8) = 3.73.

This date are smoothing in matrix c,; by 2D interpolation with MAT-
LAB operator, using the spline functions.

In Fig. 10.2 we can see the distribution of concentration ¢ for Ca in the
(x,y) plane by z = L;. On the below of peat block z = 0 the elements

of matrix ¢, are constant 1.30’%.

The numerical results are obtained for z,, =mhz,m =0,10,hz = ﬁ,

10
(Dy =Dy =310 Dy, =103,L, =3,L, =L, = 1o, = 20,5, =
10,0 = ay =2.5,M =N = 20,a = 1.3.
For the initial condition the averaged solutions c¢;(x,y) are choosed.
We have the stationary solution with 7 = 1,7y = 1000 the maximal
error 1075, the maximal value of c,(x,y) 2.6446 for averaged method
2.6892 for ADI method (following results can see in Figs. 10.3-10.13).
The spline functions and results are represented in Figs. 10.14-10.16).
Depending on the number of the grid points (N,M) we have following
maximal values for ADI method:
2.6974(M = N = 10),2.6892(M = N = 28),2.6859(M = N = 40),
2.6841(M = N = 60). Depending on the parameter a by M = N = 20
are obtained following maximal values corresponding for averaged
and ADI methods:
2.6446;2.6892(a =1.3),2.6172;2.6406(a =0.1),2.6582;2.7300(a =
2.0).
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Concentration Cv=c(x,y), MaxC1=2.6446, MinvC1=2.5000
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ConcCapr=c(x.y),k=0.0000,M=2.689,m=2.500

Fig. 10.3 Levels of averaged concentration
cz(x,y)

Fig. 10.4 Levels of numerical concentration
cz(x,y)

Levels of Cnum by z=0, MaxCz0=1.3003, MinCz0=1.3001

Levels of C by z=0, MaxCz0=1.3003, MinCz0=1.3001
=
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Fig. 10.5 Levels of averaged concentration
cz(x,y) forz=0

Levels of C by z=Lz/2, MaxCz=2.7604, MinCz=2.2578

Fig. 10.6 Levels of numerical concentration
c(x,y) forz=0

Levels of Cnum by z=Lz/2, MaxCz=2.7244, MinCz=2.2577
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Fig. 10.7 Levels of averaged concentration
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Fig. 10.8 Levels of numerical concentration
c:(x,y) forz=L;/2
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Levels of C by x=Lx/2, MaxCx=4.6153, MinCx=1.3001 Levels of Cnum by x=Lx/2, MaxCx=4.6153, MinCx=1.3001
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Fig. 10.9 Levels of averaged concentration
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Fig. 10.11 Levels of averaged concentration
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10.2.1 Matlab programm

We solve following boundary-value problem:

u"(z) —Ku(z) =0,z € (0,L),
u'(0) = B(u(0) —0),z=0, (10.12)
W (L)— =—a(u(l) —ca),z=L.

For a = k,a0 = a/2 in the exponential spline we have exact solution
for every c0,ca,L,k, B, . The numerical results are obtaining with
MATLAB using the following m. file ’EXPgRAF(20)”*:

1 u''-k"2u=0, u'(0)=beta (u(0)-c0),u'(L)=-alfa(u(L)-ca)
2 %a=al=k;a0=a2=k/2, then exp.spline are exact

3 %eksp.spline functions for L=1

4 function EXPgRAF (N)

5 L=1;NP=N+1;
6

7

8

9

oe

z=linspace(0,L,NP) ';
a=0.0001:1:50.0001;y=0.5*sinh((z-L/2)*a) /diag(sinh(a/2));
plot (z,y),
title ('GRAF y=0.5%sinh(ax (z-L/2))/sinh(a/2),a=0(1)50")

10 figure, y=0.25%(sinh((z-L/2)*a))."2/diag((sinh(a/2))."2);

u plot (z,y),

2 title ('GRAF y=0.25%sinh”2(ax(z-L/2))/sinh"2(a/2),a=0(1)50")

13 L=5;ca=1;c0=1;beta=10;alfa=10;k=5;U=zeros (NP, 1) ;

14 Ul=zeros (NP, 1);

15 U2=zeros (NP, 1) ;al=k;a2=k/2;z=linspace(0,L,NP) ';h=L/N;

16 C2=(ca+cOx (beta/k*sinh (k*L)+beta/alfa*xcosh(kxL)))/.

17 ((beta/alfa +1)*cosh(k*L)+ (k/alfa+beta/k) *sinh (kL)) ;

13 Cl=beta/kx (C2-c0);

19 for j= 1:NP

20 U(j)=C2*cosh (kx(z(j)))+Clxsinh(k*(z(3)));

21 end

» v1l=1l/(Lxk)* (Cl* (cosh(k*L)-1)+C2%sinh (kL)) ;

23 %Exponent. spline

24 A0=0.25% (sinh (a2+L) / (a2%L)-1) / (cosh (a2xL)-1);

25 dz2=0.5%xL*a2+coth (a2%L/2);dzl=0.5xLxalxcoth (alxL/2);

26 Al=0.25-A0; sauc= beta*L"2*Al +dz2*0.5%L +dzlxLxAl+.

27 ((dzl+0.5xbeta*L) *dz2+ (dz2+beta*xL*Al) *xdzl) /alfa;

3 a22=((dzl+beta*L/2)*xca + beta*cOx(dzl/alfa +0.5%L))/sauc;

29 all=(betaxL +dzl+beta/alfaxdzl)/sauc;

30 bll=dz2* (l-beta/alfa)/sauc;

31 b22=(ca* (dz2 +betaxL*Al)-betaxcO* (dz2/alfa+LxAl)) /sauc;

32 uv=2xdz2*a22/ (2xdz2xall +Lxk"2); e=-allxuv+a22;

33 m=—bllxuv+b22;

3% for i=1:NP

35 Ul(i)=uv+0.5*m+Lxsinh(al*(z(i)-L/2))/sinh(alxL/2)+.

36 exLx (0.25% (sinh(a2*(z(i)-L/2))) "2/ (sinh(a2+«L/2)) "2 -A0);
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end

atv=(-Ul(3)-3+U1(1)+4*U1(2))/ (2xh)

%$Paraboliskie splaini

dzl=1;dz2=1;A0=1/12;A1=1/6;

sauc= beta*L"2+Al +dz2+0.5%L +dzlxL*xAl+.
((dz1+0.5*betaxL) xdz2+ (dz2+beta*LxAl) xdzl) /alfa;
a22=((dzl+beta*L/2) xca + betaxcOx(dzl/alfa +0.5%L)) /sauc;
all=(beta*L +dzl+beta/alfaxdzl)/sauc;

bll=dz2* (1-beta/alfa) /sauc;

b22=(ca* (dz2 +betaxLxAl)-beta*cO* (dz2/alfa+LxAl)) /sauc;
uvl=2xdz2+a22/ (2xdz2*xall +Lxk"2); e=-all*uvl+a22;
m=-bllxuvl+b22;

for i=1:NP

U2 (i)=uvl+m* (z (i) -L/2)+e*Lx ((z(i)-L/2)"2/L"2 -1/12);
end

[max (U) ,max (Ul), max(U2)], [vl,uv,uvl]

[max (abs (U-Ul) ) ,max (abs (U-U2)) ]

figure

plot(z,U, 'kx',z,Ul, 'k-',2z,U2, 'ko', 'LineWidth',2.5)
title(sprintf('du/dz-k"2u=0, k=...

%$4.2f, beta=%4.2f,L=%4.2f"',k,beta, L))

legend('analytic solution', 'eksp. spline', 'par. spline')

Fig.

ac

GRAF y=0.5"sinh(a*(z-L/2))/sinh(a/2),a=0(1)50 GRAF y=0.25"sinh?(a*(z-L/2))/sinh?(a/2),a=0(1)50

0.5

10.14 Spline function-multiplier of m for Fig. 10.15 Spline function-multiplier of e for
[0.0001,50],L = 1,N =20 a €[0.0001,50],L=1,N =20
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du/dz—k2u=0, k=5.00, beta=10.00,L=5.00

. analync solution
m— cksp. spline
® par. spline

-05
0

Fig. 10.16 Exact, exponential and parabolic
values fork=L=5a=8=10,c0=ca=1

10.3 Formulation of special 3-D problem in Decart coordinates

The process of diffusion is consider in 3-D parallelepiped
Q={(x,»2):0<x<L,0<y<L,0<z<L}.

We will consider the stationary 3-D problem of the linear diffusion
theory We will find the distribution of concentrations ¢ = ¢(x,y,z) in
Q at the point (x,y,z) by solving the following special 3-D boundary
value problem for partial differential equation (PDE):

(% (ngx)"'a%(l)y&)“‘

a—Z(DZaC)+foc052L cos 77 =

9c(0,y2) _ de(x0,

C(axyz) = 299 — 0,¢(Ly, .z ) 0,c(x,Ly,2) =0,  (10.13)

D ’y’ — B:(c(x,y,0) —cocos 77 2L cos 2Ly) 0,

DZM‘*’O&( (x,y,L) Ca COS 57~ 2L cos 25)

0,

\

where fp,c,,c,) - are the fixed constants,

D.,D,,D, are the constant diffusion coefficients, ¢, 3; are the con-
stant mass transfer coefficients in the 3 kind boundary conditions.
We can obtained the analytical solution of (10.13)in following form:
c(x,,2) = g(z) cos 57 cos 2”11,

where the functiong(z) is solution of boundary value-problem for
ODE
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{g”(Z) —agg(z) + f1 =0, (10.14)
g'(0) —B(g(0) —co) = 0,8'(L;) + (g(L;) —ca) = 0,
where f| = fO/Dbﬁ = ﬁZ/Dma = (Xz/Dma(z) = %W

We have following solutions

g(z) = Cysinh(apz) + Ca cosh(apz) + f,
where C1 = f/ao(C2 + fo—¢,),Co = (C“_fzg(/z({ff:ﬁ/aom ;
= fl/a%,q = cosh(apL;) + a/apsinh(agL;),
¢4 = sinh(agL;) + a/agcosh(apL;).

10.3.1 CAM in z-direction using integral hyperbolic type spline
with two fixed parametrical functions

Using averaged method for ( 10.14) with fixed parametrical functions

[ z1  J: z2

8(2) = ga+mf(z—L:/2) +efa(z—L/2),

where g, = LLZ fOLZ g(z)dzis the averaged value, fOLZ fadz= fOLZ fndz=
% 0.5L;sinh(a(z—L;/2)) _ cosh(a(z—L;/2))—Ag

fa= smh(aL /2) Ja = 8S1nh2(aL /4)

Ao = sinh(aL;/2)/(aL;/2),a = ay is the optimal parameter.

We can see that the parameters a tend to zero then the limit is the in-
tegral parabolic spline (A.Buikis [9]), because Ag — % :

_ 2
fa = (2= Lo/2), fo = (S — ).

The unknown coefficients m,e we can determine from boundary
conditions (10.14):
1) for z=0 ,md — ek — B (g, — 0.5mL, +eb —c,),
2) for z=L,,md + ek + (g, +0.5mL, + eb — c,),

where d = (aL:/2) coth(aL/2).k = (a/4) coth(aL/4). b = <Slz 2,

Therefore e = gogq+ae,m = gugm~+am,8e = (01](X+a21[3)/d€l,gm =
(a2B —appa)/det,

ae = (coan1 B+caan @) /det,ay = (cqarn0 —coanf3)/det,det = ayyar +
arany,

aly :d+[3LZ/2,a21 :d-l-OCLZ/Z,alz =k+bB,ax =k+ba.
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Now the-boundary value problem (10.14) is in the form

1/L.(¢ (L) — £'(0) — dgga+ fi = 0,8 (L) — ¢'(0) = 2¢k  (10.15)
or g = .

Example 1.We consider following parameters:
Ly=L,=L,=1,fo=0.1,0;, =03,B,=0.1,¢, =5,¢c, = 2,Dy =
1072,D, = 1073,D, = 107%,ayg = 16.4747.

We have following maximal errors: for hyperbolic spline er, =2107,
for parabolic er, = 0.9653 (see g(z) in Fig. 10.17 and ¢(x,0,z) in Fig.
10.18) If Dy, =0,y = 0, then er), = 810*8,erp =1.0423.

Virsma-Hip-Splaini, Hypkl=0.0000,Parkl=0.9653

Solution g=g(z),Hypkl=0.0000

1 ° o = = =analytic solution
1 o © parabolic spline
45| \‘ ° ° ® hperbolic spline | |
o
L3
\ ° °
\
4 'a N °
R TP 2'8_" oo,
©35 ° LS
° A
\
3 ° \
° t
(] 1
° \
250 o M
\
o

0 0.2 0.4 0.6 0.8
z

Fig. 10.17 Solution g(z) Fig. 10.18 Solution ¢(x,0,z)

10.3.2 The problem in cylindrical coordinates with axial symmetry

The process of diffusion is consider in 3-D cylinder
Q={(rz9):0<r<R0<z<L,0<¢ <2r}.

We will consider the stationary boundary-value problem with axial
symmetry . We will find the distribution of concentrations ¢ = ¢(r,z)
in Q at the point (r,z) by solving the following special boundary value
problem for partial differential equation (PDE):
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D12 (r9¢)+ 2 (ngZH—focos%:O,
9%m:9““) 0,c(r,L,) =0, (10.16)
D, (Z)+Otr( (R,z) —cqco8 37) =0,

where fj,c,) - are the fixed constants,

D,, D, are the constant diffusion coefficients, ¢, is the constant mass
transfer coefficient in the 3 kind boundary conditions. We can ob-
tain the analytical solution of (10.16)in following form: c¢(r,z) =

g( )COS 2L 9
where the function g(r) is solution of boundary-value problem for
ODE |
g"(r)++8'(r) —age(r) + f1 =0
’ (10.17)
{ '(0) = Og’(R) a(s(R) —ca) =0,

2D, /L2
where f = fol Dt oDy = E2E
We have following solutions

g(r) = Cilp(aor) + f>,

_f . (X(Ca*f)
where f> = a_:z)v Ci = aol; (aoR)+a§0(a0R)’

I, I} are the modified Bessel

functions.

10.3.3 The averaged method in r-direction using integral spline
with two fixed parametrical functions

Using averaged method ( 10.17) with fixed parametrical functions

f rl, f r2
8(r) =ga+mfr(r—R/2)+efia(r—R/2),
where
8a = 1% J& rg(r)dr is the averaged value, [ rfodr = [Xrfradr =0
R*a*sinh(a(r—R/2)) h(a(r—R/2
frn= 4gini1(a1$(2)(d /1 —Lfn= 00583151h2(a/R/)4)1) ’
Ap = sinh(aR/Z)/(aR/2) d = Ra/2coth(aR/2),a = ag + kor,kor is
the corection for optimal parameter.
We can see that the parameter a tend to zero then the limit is the inte-
gral parabolic spline.
The unknown coefficients m,e we can determine from boundary
conditions (10.17):
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1) for r=0 ,md, — ek = 0,
2) for r=R,md, + ek + ot(g, + mby, + eb, — c,),

where
k= (a/4)coth(aR/4),d, = 0.5%Rda*/(d — 1),
__cosh(aR/2))—Aq _ R0a* 1

¢ " gsinhX(aR/4) M T 4(d-1)
Therefore e = (¢, — ga)/g1,m = ek/d,, g1 = 2k/ o+ b,k /d, + b,
Now the-boundary value problem (10.17) is in the form

2/R*(Rg'(R)) - agga+ fi = 0,8 (R) = 2ek (10.18)

— fig1R+4ke,
Of 8a = éllkii-a%glR ’
Example 2.We consider following parameters L, =R =1, fo = —0.1, 0, =
10.01,¢,=10,D, =1072,D, = 1072, D, = 10~* a9 = 1.5708.
We have following maximal errors:

for hyperbolic spline er;, = 0.00084, kor = —0.202 for parabolic er, =
0.7476 (see g(r) in Fig. 10.19 and c¢(r,z) in Fig. 10.20) If a, =

Errors,Hyp=0.001,Par=0.748, a=1.369 Virsma-Hip-Splaini, Hypkl=0.0008,Parkl=0.7476

= = = Exact v
8l *  hyperbolic ]
o arabolic

P pod

L L L L
0 0.2 0.4 0.6 0.8 1

Fig. 10.19 Solution g(r) Fig. 10.20 Solution ¢(r,z)

0.01 then er, = 0.00032,er, = 0.3412, but for fo = 1.01 : er, =
0.00079,er, = 0.8412.

10.3.4 The problem in sferical coordinates with axial symmetry

The process of diffusion is consider in half ball
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Q={(r0,0):0<r<R0<6<m/2,0<¢<2m}.

We will consider the stationary boundary-value problem with axial
symmetry. We will find the distribution of concentrations ¢ = ¢(r,0)
in Q at the point (r,0) by solving the following special boundary-
value problem for partial differential equation (PDE):

Tsin(@ )—(sin(9)39)+focos( )/r* =0,
) 8( 6) = =0,c(r,m/2) =0,

9e(RO) 4 OC,( (R,0) —c4cos(0) =0,
where f, ca)—are the fixed constants,
D,,Dg are constant diffusion coefficients, ¢, is the constant mass

transfer coefficient.
We can obtain the analytical solution of (10.19) in following form:

c(r,0) =g(r)cos(0),

where the functiong(r) is solution of boundary-value problem for

o r2¢"(r) +2rg(r) — a5e(r) + f1 = 0
{g ()2 0,¢/(R) + a(e(R)— ) 0, (10-20)

where f| = fO/Dha = ar/Dﬁa% = % > 2.
We have following solutions

(10.19)

g(r) =Cir' + fa,

where

_ _ _ alea—f2
= f;, = —0.5+,/025+a3 ) = L

10.3.5 CAM in r-direction with two fixed parametrical functions

Using averaged method (10.19) simirally Decart coordinates with
functions f,1, fi2

g(l’) = 8a +mfr1(r_R/2) —1—efr2(r—R/2),

where

=% f(f (r )dr is the averaged value, f(f frldr = f(f frodr=0
f 0.5Rsinh(a(r—R/2)) f __cosh(a(r—R/2))—A
= sinh(aR/2) 2= 8sinh’(aR/4)




10.3 Formulation of special 3-D problem in Decart coordinates 317

Ao = sinh(aR/2)/(aR/2),a = ap + kor,kor is the corection for opti-
mal parameter.

We can see that the parameters a tend to zero then the limit is the in-
tegral parabolic spline (A. Buikis [9]).

The unknown coefficients m,e we can determine from boundary con-
ditions (10.20):

1) for r=0 ,md — ek = 0,

2) for r=R,md + ek + a.(g, + mR/2+eb —c,),

where k = (a/4)coth(aR/4),d = 0.5xRacoth(aR/2),b = cosh(aR/2))—Ag

8sinh?(aR/4)

Therefore e = (¢, — g4)/81,m = ek/d, g1 =2k/ot+b+0.5kR/d.
Now the-boundary value problem (10.20) is in the form

1/R(R*g(R)) — dgga+ fi = 0,¢'(R) = 2ek (10.21)
Or 8q = flzg}efifgfﬁca
Example 3. We consider following parameters:
R=2,f=0.1,0,=0.003,c, = 1,D;, = 1072,D, = 10~%, a9 = 14.142.
We have following maximal errors:
for hyperbolic spline er;, = 0.0350, kor = —7.0
for parabolic er, = 1.968 (see g(r) in Fig. 10.21 and c(r, 6) in Fig.
10.22) If R = 1 then ery, = 0.0712,kor = —1.0,er, = 1.966.

Solution g=g(r),Hypkl=0.0350 Virsma-Hip-Splaini, Hypkl=0.0350,Parkl=1.9684

7 T
©®© 00 g ° = = =analytic solution
o o O parabolic spline

6 o ° ®  hperbolic spline | |

o
[~}

5= @ —a= o o—o—o-'—o-o-o—g-'-o-.-‘
o S

0 0.5 1 15 2

Fig. 10.21 Solution g(r) Fig. 10.22 Solution ¢(r,0)
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10.4 The solution of 3-D two layer stationary diffusion problem

The process of diffusion is consider in 3-D parallelepiped
Q={(x,2:0<x<L,0<y<L,,0<z<L}.
The domain €2 consist of 2 layer medium in the z direction
Qi ={(x,3,2) :x € (0,Ly),y € (0,Ly) 2 € (zi-1,2) }i = 1,2,

where H; = z; — z;— is the height of layer €;,70 = 0,20 = L,
We will find the distribution of concentrations ¢; = ¢;(x,y,z)
in every layer €; at the point (x,y,z) € €;
solving the following 3-D boundary-value problem for partial differ-
ential equations (PDEs):

(Dx%icl)—'_ (DY%;Z)"F (Dlz%cl) a,'zoci‘|‘Fi:Oa
€ (0,Ly),y € (0,Ly),2 € (zi1,2), 22922 = 2402 — g ; =73,
. =0 .
Cl(x,y,O) 0 Cl( xy Y5 < )—C,(X Ly7 ):0712152762%—7;7”:07

ey (xy. Jea(xpyiz
c1(x,y,21) = e2(x,3,21), D1, 248 zym =Dn; CZ(SZyZI)’

(10.22)
where ¢; = c¢;(x,y,z) are the concentrations functions in every layer,
F; - the fixed constants, Dy, Dy,D1,,D>;,a;y are the constant coeffi-
cients.

10.4.1 The CAM with the hyperbolic type integral spline
approximation in z-direction

Using averaged method with respect to z with fixed parametrical func-
tions fi1, fin,i=1,2

Cz(x 2z ) = Clz(x Y) +mlz(x7Y)ﬁzl(Z_Z_i) +eizﬁz2(z_z_i),

Where ciz(x,y) = gz [ | ci(x,,2)dz, are the averaged values,

O fia(@)dz= [F f,zz() = 0,7 = (zi-1+2)/2,2 € [zi-1,2i),
f 0.5H; sinh(a;,( Z Zl f _ cosh(ai;(z—%))—A;;
izl = T inh(0.5a;.H; 22 = 8sinh?(0.25a;,H;) ’

A, = %%,z = 1,2, and a;; > 0 are fixed parameters (un-
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known).
If a;p # O then we can chooze a;; = |ajo|/1/Di;. We can see that
the parameters a;; tend to zero then the limit is the integral parabolic
spline from (A. Buikis [9]).

The unknown functions m;;(x,y),e;;(x,y) we can determine from
boundary conditions by z=0,z=1L;:
dozma; + kozer, = 0,ma; = —pazerz, po: = koz/doy,
diz = 0.5a;,H; COth(O Sa;,H, ) ki, = 0.25a;, coth(O.25aiZH,~,

cosh(0.5a;,H;)—A;
—O05miH +bizer; = 0,bi; = 8sin(h2(035;),-zHi§Z’

Dlz(dlzmlz +kize1z) = Do (dogma; — kozer;),
c1z+0.5m Hy +byze1; = ¢ —0.5mo Hy +bozeny,my; = 2(uy, +bizer;) /Hy.
Therefore we have the system of 2 algebraic equations for e;;,i =1,2:
biiei;+birer; = —2c1.di/Hy, byrer; + bney, = co; — 2cy,
where by = k12+2d11b1Z/H1,b12 =2Dy1ka;,b21 =2b1;,by0 = —(b22+
0.5p2.H>).
The solution is: ey, = ajic1; + ajaca;, €2, = azic1; + axcay,
where al = (2b12—2b22d1Z/H1)/d,a12 = —blz/d,azl = (2b21dlz/Hl —
2b11)/d,axn =b11/d,d = b11by — biabay,

The boundary value 2-D problem is in following form

d d
g(Dx ac;) + (%(Dy ac;) +a01,c1,+ 001,20, — a%oclz + F1 =0,
dco, dco, .
i(Dx 5§ )"— a&y (Dy 5; )+bOZchz +a02;¢2; — a%OCZZ +FR =0,

dx
aciz()(CLy) ac’a(;c O) 0 (CIZ(LX7y) = CiZ(XaLy) = 07
(10.23)
where a0y, = 22t po, = 2Pikidis T3 ;=77

10.4.2 The CAM in y-direction

Using averaged method with respect to y with fixed parametrical func-
tions fiy1, fiy2,i = 1,2
ciz(x,y) = ciy(x) +miy(x) fiy1 (v — Ly /2) + eiy fisa (v — Ly /2),
where cjy(x) = Li fOL " ciz(x,y)dy, are the averaged values,
0.5L, smh(a” y—Ly/2)) __ cosh( azy(y L,/2))—A
Jiyr = sinh(0.5a;yLy) » five = 8sinh?(0.25a;,L ) ’

__ 0.5sinh(0.5a;Ly) . _
Ay = W,l = 1,2, and for the parameter we choose a;y =
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\/ (=i +3) /D
Similarly, we determine the unknown functions m;y(x),e;y(x),from
boundary conditions by y =0,y =L,

and eiy(x) = Czi(:)agiy = _biy - 0-5piyLy, miy(x) = piyeiy(x),Piy =
kiy/diy,diy = O.SaiyLy COth(O Sa,yLy) iy = =0. 2561iy COth(O.25aiyLy),
~__ cosh(0.5a;Ly)—Ayy 0.5sinh(0.5a;,L,)
B Rsinh2(0.25a,Ly) Y 05a,yL_
The boundary-value 1-D problem is in following form

%( ac” )+ a0lycyy) + a0 cry + b0y cay — adycry + Fi = 0,
%( aczy )+ aOZyczy) +b0o;c1y +a0p,c0y — a%OCZy +F =0,
‘9‘3950) - 0 iy(Ly) =0,i=T,2,
(10.24)
where a0;, = zllzyg ]Zy )

10.4.3 The CAM in x-direction

Using averaged method with respect to x with fixed parametrical func-
tions fix1, fix2,i = 1,2
Ciy(x) = Cix +Mix fix1 (x - Lx/z) +eixfix2 (x - LX/Z),
where ¢, = Ll fOLX ciy(x)dx, are the averaged values,
0. 5Lxsmh(a,x x— LX/Z _ cosh(ajx(x—Ly/2))—A
Sl = =TGR sapLy 2 2 = 8sinh?(0. 25a,xLx) K

Ssinh
Aix = W,z = 1,2, and for the parameter we chooze a;, =
. 1x4=~x

\/(—aOiy —a0;; + aizo)/Dx.
Similarly, we determine the unknown constants m;y, e;,
from boundary conditions by x = 0,x = L, and e;(x) = %,gix =
_bix - O‘SPiXLX7
My = Pix€ix, Pix = kix/dim dx = 0 Sa,xL COth(O.SaixLx),kix = 0.25a,~x COth(O.ZSa,‘xLx),
- __ cosh(0.5a;Ly)—Ai 4. 0.5sinh(0.5a;,Ly)
X g inh®(0.25a5Ly) X T 0.5axLy  °
From problem (10.24) follows 2 linear algebraic equations
cricix+ 2 +F1 = 0,011+ C2262x +F =0,
where cj1 = a0y, +a01y + a0y, — alo,clg = b01,,c21 = b0y;,c00 =

2D, k;
a0z, + a02y + a0y, — a3, a0y = Togin -
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The solution is Clx = (Clez—szFl)/dl,sz = (C21F1 —C11F2)/d1,d1 =
C11€22 — C12C21-

10.4.4 The CAM in y-direction and z- direction

If ajo = 0 then for the parameters a;, we determine the iteration pro-
cess with using the CAM first in inverse directions
(y-direction and then z-direction). In y-directon c;(x,y,z) = cjy(x,z) +
miy(xu Z)fiyl + eiyfiy2»

1

where cjy(x,2) = L_yf()L " ci(x,y,z)dy is the averaged value and a;, =

\/—a0;;/Dy is the previous value. In z-directon c;y(x,z) = ciz(x) +
miz(x) fiz1 + eiz (%) fiz2,

where c¢;;(x) = fLI, o ciy(x,z)dz and aj; = /—a0;y/D; is the new
value for parameter a;;. We can use the iteration process for obtain
the parameters a;;, a;y, djy.

10.4.5 The 2-order Fourier method

For comparision we use Fourier series method in the domain € =
{(1,91,2) 1 0 < xy < 2L,,0 <yp < 2L,z € (z-1,2%) ),k = 1,2 and
xy =x+Ly € [Ly,2Ly|,y1 =y+Ly € [Ly,2Ly],if x € [0,Lx],y € [0,Ly].
Then for the partial equation (10.21) we have following BCs:

C1 (xl7y170) :Ck(X1,2Ly,Z) - Ck(zanbe) :Ck(xl,O,Z) = Ck(()?ylvz) =

acl (X] WY1 7LZ) —
dz =0,

dey(x1,y1,H dey(x1,y1,H
c1(xi,y1,Hi) = ea(x1,v1,Hy ), Di, 2 L2 U = p,, 2l 52 L,

and we can be obtain the solution in the series form
cr(x1,31,2) = L7AL (Wi j(x1,0), Fe = X5 Bf ;Wi j,

2L, 2L 16F;/LyLy
where Bﬁj =Fi Jo " Jo " Wi j(x1,y1)dxidyy = 71:2(2i—1—)(2jil)’

. — /L G i S - 3
Wi j(x1,y1) = fr SN 57 sin it are the orthonormed eigenfunc

i_ﬂj_ﬂ)Z
2L, 2L,/ -
Therefore for A{.f j (z) we have following boundary-value problem of
the system ODEs:

tions (i, j) = 1,0 with the coresponding eigenvalues (; ; = (
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d*Ak () sk L L
dAgZ%L ) B aiJkAiJ(Z) +b;;=0,k=1,2
I (H 2 (H

DZ tézl :DZZ l,ézl ’
where

2 . )
a4 = i (Dx((2 = 1)/Le)* + Dy (2 = 1)/1y)?) + @/ Dic, by =
B{'(,j/Dkz-

The solution is A} ;(z) = Cy sinh(a; 1) + Ccosh(a; 12) + i1 =0,
Aiz,j(z) = C3sinh(a; j2z) + Cacosh(a; j22) + gi,j2 = 0, where C; =

k

_gl,_]717c3 — _C4 tal’lh(aiyj’sz),gi’Lk = a'z’:]k’
iJ,
-1
_ 8ij2—8ij1(1—cosh™ (a; j1Hi) Doy — Dy,
Ca= Da1d; jtanh(a; j 1H1)b; j3bija > 21 — Dy

di,j = Z;:—;f,bi7j’3 = sinh(aiJ,zHl) — tanh(ai7j,2LZ) COSh(ai7_i’2H1),
bl'7j74 =— COSh(aLj’zHl) + tanh(a,-7j72LZ) sinh(ai7j72H1),
C1 = D21d,',jbl"j73/COSh(al’J?]HO —|—g,-7j71 tanh(ai’mHl )
For maximal value depends on z My(z) = cx(Lx, Ly, z) = X7 (— l)iﬂ'Aﬁ i(2).
For averaging in z-direction
Cla= 71 Jo" €1 (Ly, Ly, 2)d2, €20 = 71; fy7: 2(L, Ly,2)dz
For averaging in z-directionby x =L,y =L, ¢, = L% szsz c(Ly,Ly,z1)dz
follows '
c1a = Y7;(—= 1)/ (Ci(cosh(ay ;1 Hi) — 1)/ (ai j 1 Hi)+
gi,j,1(1 —sinh(a; j 1Hy)/(a;j1Hy)),
2 = Xi(—=1)*/(C3(cosh(a; joL;) — cosh(a; j2Hi))/ (aij2Ha))+
C4(sinh(a,-7j’2LZ) - sinh(ai’j’zHl)/(aiJ’lHl)) —|— g.,'J,z),
For maximal value by z = L;,M = }.7;(—1)""/(Cy/ cosh(a; j2L.) +
8i,j2)-

jExample. We consider F1 =2,F,=1,L,=1,H;=0.6,H, =0.4,L, =
2,L,=3,D1,=10"2,Dp, = 1073,D, =3.1073,D, = 3.10~*.
For initial value a, = 1,a;, = 3 we obtain with the 5 iterations
aj; = 0.44,a,, = 0.89,a1, = 19.07, a5, = 7.52,
ap, = 6.08,a, = 2.43 with maximal error 1079,
We obtain the maximal values M in 2 layers: My = [134.5,59.2] for
Fourier method with 10 series summ, My = [121.6,50.3 for hyper-
bolic approximation, Mp = [259.8, 119.9] for parabolic approximation
with ajx = ajy = a;; = 0.0001, (i = 1;2);
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and the averaged values A : Ap = [108.0,35.3] Ay = [75.5,27.1,

Ap=1[94.7,32.4.
In Figs. 10.23-10.28 are represented the solutions.

Spl. on z, max=121.5984 Sol. on z, ua1=35.319,ua2=108.047

140

140

120

100

80

u_ver
a

601

401

20r

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
z z

Fig. 10.23 Maximal solution with hiperbolic Fig. 10.24 Maximal solution with Fourier
CAM depending on z method depending on z

Spl. on z, max=259.8152 Virsma-Furje, MaxFur=134.4924

300

0 0.2 0.4 0.6 0.8 1
z

Fig. 10.25 Maximal solution with parabolic Fig. 10.26 Solution ¢, with with Forier
CAM depending on z method by z = L, depends on (x,y)
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Hyp-Spl1, Max=50.4349, Vid=27.1181 Hyp-Spl2, Max=121.5984, Vid=75.5647

120

100

80

60

40

20

Fig. 10.27 Solution ¢; with with hiperbolic Fig. 10.28 Solution ¢, with with hiperbolic
CAM by z = H; depends on (X,y) CAM by z = L, depends on (X,y)

10.5 Special hyperbolic type spline for 3-D nonstationary
diffusion problem in peat block

The process of diffusion is consider in 3-D parallelepiped
Q = {(x7y7Z) OSXSLJHOS.VSL}MOSZSLZ}

We will find the distribution of concentrations of metals in the peat
block ¢ = c(x,y,z,t) by solving the following 3-D initial-boundary
value problem for partial differential equation (PDE):

(5 = 5DG)+ 5D+
3_<0D a—z)+{0,)i)e (0,Ly),y € (0,Ly),z € (0,L;),
(ai L) C(xath) = O,C(X,y,Z,O) = CO(X,y,Z),

30( x:%Zl + ax(c X7y7Z t) Cax) — O’ (10.26)

Dy (L

D (XL)vzl (C()CLy Zt) Cay):07

D M"‘az( (x,3,Lzst) — caz) = 0,

\D, 7y’0t ,BZ( (x,y,O,t)—CoZ)ZO,

where fo is the fixed constant, co(x,y,z) is the concentration of the
metals by t=0,

D,,Dy,D, are the constant coefficients,

O, Oy, O, B, are the constant mass transfer coefficients,
Caz,C0z; Cay, Cax are the given concentration on the boundary.
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10.5.1 The CAM with the hyperbolic type integral spline
approximation in z-direction

For solving (10.26) we consider with respect to z-direction the CAM
in following form:
C(Xa}’aZ’l) = Cz(x»y’t> +mz(x7Yat)le +ez(x,y,t)fZ2,
with following two ﬁxed hyperbolic type functions and parameter a;:
foq = 0.5L;sinh(a;(z—0.5L;) , fo = cosh(a;(z—0.5L;))—Ao,

L 22

sinh(0.5a,L;) 8§1nh2(0 25a.L;)

where Ag, = % cz(x,y,t) = L_z fo c(x,y,z,t)dz is the averaged

value and a, > 0 is ﬁxed initial parameter (unknown !).
We can see that the parameters a; tend to zero then the limit is the
integral parabolic spline from (A. Buikis [9]).
The unknown functions m;(x,y,t),e.(x,y,t), are determine from
boundary conditions by z=0,z=1L;:
D (d.m; —kze;) — B.(c; — 0.5m.L; + b-e; — co;) =0,
d, = 0.5a,L;coth(0.5a,L;),k, = 0.25a, coth(0.25a,L;),
D (d:m; +kze;) + 0 (c;+0.5m L, +bre; — ca) = 0,
cosh(0.5a;L;)—Ay,
8sinh?(0.25a.L;)

where b, =

Therefore e;(x,y) = Caz8az + €0:80; — ¢2(X,¥)8z, 82 = &az + 80z,

(
80z = ﬁz( . +0.5¢; z/D )/SZagaz— az( Z+O'5ﬁZLZ/DZ)/S17
S, =2Dk.d,+b,L;0.B./D,+ (o, + B;)(d.b, + 0.5k.L,),

mz(x>y7t) = Cazhaz + coghoz + ¢ (%, y,1) hey hy = haz + hoy,
ho, = —B:(k;+ 0b;/D;) Sz, hay = @ (k; + Beb:/D;) /.
The boundary-value 2-D problem is in following form
( de. de. de.
ot gx (Dx acx ) + gy (Daa ) Bzggcz+0
B (8azCaz + 80zC0z) + fo, czax’% 2 < ngy t)’
dcz(Ly,y,
D % + o (¢ (Lys 1) — cax) =0, (10.27)
DyMyL“[) + ot (cz(x,Ly,t) — cay) =0,
c:(x,5,0) = c0(x,y),

where B, = 2Dk, /L;,c,o(x,y) = Liz fOLZ co(x,y,z)dz.
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10.5.2 The CAM in y-direction

For ¢ (x,y,1) = cy(x,1) +my(x, l)fyl +ey(x,1) fi2,
OSL sinh(ay(y—0.5Ly) _ cosh(ay(y—0.5Ly))—Ao,

we haVe fyl smh(O Sa}L) fy 881Hh2(0 250}Ly)

sinh(0.5ayLy) 1 L
where Ag, = W&’,cy(x,t) = L_yfo c;(x,y,t)dy is the averaged
value,

and for the parameter we chooze a, = /B.g./D,.
Similarly, we determine the unknown functions my(x,t),e,(x,?),

from boundary conditions by y =0,y =L, :

ey(x,t) = %;W)vgy = by+0.5pyLy+2kyDy/ 0y, my(x,1) = pyey(x,t), py =

ky/dy,dy, = 0.5ay,Lycoth(0.5a,Ly),k, = 0.25a, coth(0.25a,L,),
b — cosh(O SayLy)—Aoy

Y 8sinh?(0.25a,Ly)
The boundary Value 1-D problem is in following form

dJ 0 dey
F =D+ o (Cay—¢y)
Bzgzcy +B; (gazcaz +gOZCOZ) +f0:cy(xa O) = CyO(x)a (10.28)

a 5 y Xy
Cya(gt) _ 0 D, dc (L 1) + OCx(Cy(Lx,Z‘) Cax) _ 0’

L
where By, = 2Dk, /Ly, cy0(x) = i Jo™ c0(x,)dy.

10.5.3 The CAM in x-direction

For cy(x,1) = cx(t) + mx(t) fr1 +ex( ) fe2s
0.5L, sinh(a,(x—0. SLx _ cosh(ay(x—0.5L,))—Aq
we have fy = sinh(0.5a,Ly) fo = 8sinh?(0.25a,Ly) 5

where A, W()(ga—&;j”‘) cx(t) = L_x Jix ey (x,1))dx is the averaged value,

and for the parameter we chooze a, = +/(By/gy + B:g)/Dx.
Similarly, we determine the unknown constants m,(z),e(t), from

boundary conditions by y =0,y =L,

and e, = C‘”‘gxc*,gx =by+0.5p,Ly +2k D,/ o,

My = Pyex, Px = ky/dyx,dy = 0.5a,Ly coth(0.5a,Ly), ky = 0.25a, coth(0.25a,L,

b — cosh(0.SaL) A,
¥ 8sinh?(0.25a,Ly)
From problem (10.28) follows the initial-value problem of the first or-

der ODEs in following form:

)7
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8
_BngCX(t> +Bz(gazcaz +80100z> + Jo, CX<O) = Cx0,

where By = 2Dk, /Ly, cxo = é fOLx cyo(x)dx.

We can obtain the solution in following form:

cx(t) = (Cxo — 3KYexp(—Sat) + £, where

Sk = fo+ _Cay + B;(8azCaz + g0zC0z) + Cax» Sa = & + + B:g;.

Sk
Sa-

aCx X v
{ 81f(l) — B_X(cax—cx(t)+§_i(cay_CX(t)) (10.29)

The stacionary solution is: ¢, =

10.5.4 The CAM in y-direction and z- direction

For the parameter a, we determine the iteration process with using
also the CAM first in y-direction and then z-direction. In y-directon

C(X,y,Z,t) = Cy(x7Zat) +my(x7zat)fyl +ey(x7z7t)fy27
where cy(x,2,t) = i fOLy c(x,y,z,t)dy is the averaged value and a, =

\/B:g:/D, is the previous value. In z-directon c(x,z,t) = c;(x,) +
m(x,1) fz1 + ez(x, t)sz,

where ¢;(x,1) = 1 L [Y2c,(x,2,1)dz and a, = \/(B,/g, + B.g,)/D is
the new value for parameter a,. We can used the iteration process for
obtaining the parameters a, ay, dy.

10.5.5 The numerical approximations with ADI method for the
3-D problem

We use uniform grid in the space ((K+1) x (N+1) x (M +1)):
{(Zk7yiaxj)azk:(k_l)h27yl ( )]’ly,X] (.]_1)hxvl:17N+17
j=1,M+1,k=1,K+1,Kh,=L.,Nhy=L,Mh, =L,.

For the time t we use the moments t, =nt,n=0,1,---.

Subscripts (k,i, j,n) refer to z,y,x,t indices with the mesh spacing
and

for approximation the function ¢(z,y,x,t) we have the grid function
with values Uy, ; ~ (2 Yir Xy tn)-
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For solving 3-D problem (1.12) we use the discrete approximation

1 1
(UI?;F] klj>/T_(A +Ay+A )U]?j_] +fkljan>0

k=1,K+1,i=1,N+1,j=1,M+1 and ADI method by Douglas
and Rachford [37]:

kl,j kii,j i,j’
k=2K,i=2,N,j=2, M

n+2/3 n+1/3 n+2/3
( ki, j kz] )/T_ ( ki, j Ul?i )

k—1K+1l—2N]—1M+1

1 n+2/3 . 1
(U/:lij kw )/T (UI?ZFJ U,fl])
k=1 —|—1l—1N—|—1]—2

\

(10.30)
After elimating the fractional time moments ,,/3,%,,2/3 We obtain

the previous discrete problem with approximation error O(7?). Here
Ay, Ay, A, are the discrete difference operators, approximated

de(zyxt)y 9 de(zyxt)y 9 (1 2clzyxt)
the expressions 5 (DXT), a_y(Dya—y)> a—Z(Dza—Z),

respect to x, y, z and boundary conditions with central differences,
fii.; = fo. For solving Untl/3 ynt2/3 and U™ we use Thomas al-
gorithm in z, y and x directions respectively.

10.5.6 Some numerical results

Using the ADI method for the initial condition the stationary averaged
solution ¢(x,y,z) is selected.

The numerical results are obtained for

T = 1,1y = 1000 with the maximal error 10_7, Cax = Cay = 2,0, =
o, = 20, o, = 2000, B, = 10,

D, =100-3),D, =Dy, =3100 - 4).

The maximal value of ¢(x,y,z) = 4.63 for averaged and for ADI meth-
ods, the parameters of CAM a, = 1.75,ay, = 2.49,a, = 3.20 are ob-
tained with 5 iterations (maximal dfference 107, see Fig. 10.36).

In Figs. 10.29-10.35 are represented the comparision of numerical and
averaged results depenrs on z by x = L, /2,y = L, /2. The number of
the grid points (K,N,M) are K = 19,M = N = 21.
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Levels of C by x=Lx/2, MaxCx=4.6045, MinCx=1.3633
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Fig. 10.35 Comparision with experiments by Fig. 10.36 5 iteration for parameters
¢=(L/2,Ly/2,7)



Chapter 11

Some application of magnetic field influence on
viscous incompresible liquid

The heating of buildings by ecologically clean and compact local de-
vices is an interesting and actual problem. One of the modern areas
of applications developed during last ten years is an effective usage of
electrical energy by alternating current to produce heat energy. This
work presents the mathematical model of one of such devices. It is
a finite cylinder with viscous incompressible liquid and with metal
conductors-electrods of the forms of bars placed parallel to the cylin-
der axis in the liquid. These conductors are connected to the alternat-
ing current.
We consider also 2-D stationary boundary value problem for the sys-
tem of magnetohydrodynamic (MHD) equations along with the heat
transfer equation. The viscous electrically conducting incompressible
liquid moves between infinite cylinders placed periodically. We also
examine similar 2-D MHD channel flow with periodically placed ob-
stacles on the channel walls. We analyze the 2-D forced and free MHD
convection flow as well as temperature around the cylinders and obsta-
cles subject to homogeneous external magnetics field. The cylinders,
obstacles and walls of channel with constant temperature are heated.
The goal of such investigation is to obtain the distributions of
stream function, temperature, velocity and the vortex formation in the
plane of the cylinders’ cross-section and obstacles depending on the
external magnetics field and on direction of the gravitation. For the
numerical treatment we use finite difference method.

331
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11.1 Introduction

In many physical experiments and technological applications it is im-
portant to stir and heat an electrically conducting liquid: liquid metals
(steel, mercury, lithium), liquid magnetic materials, electrolyte, water,
air. Liquid metals are considered to be the most promising coolants for
high temperature applications, like nuclear fusion reactors because of
the inherent high thermal diffusivity, thermal conductivity and hence
excellent heat transfer characteristics. Lithium is the lightest of all
metals and has the highest specific heat per unit mass.

In the developed mathematical models, vortex-type structures ap-
pear in liquid flows, as well as in problems related to energy conver-
sion in new technological devices. MHD convection flow of a viscous
incompressible fluid around cylinder with combined effects of heat
and mass transfer is an important problem prevalent in many engi-
neering applications [53], [56], [57]. These types of problems find
applications in nuclear reactors, cooling systems and energy transfer
systems.

Heat exchanger systems are employed in numerous industries. Steam
generation in boiler, air cooling within the coil of an conditioner and
automotive radiators represent just some of the conventional applica-
tions of this mechanical system. For the in-line arrangements of tube
banks (cylinders), fluid at prescribed mass flow rate of velocity Uy and
an inlet ambient temperature 7, much lower than the wall tempera-
ture 7;,, enters the area from the left side and exits on the right. By
taking the advantage of special geometrical features, such as the in-
herent repetitive nature of the flow behaviour, the computational fluid
domain allows the possible exploitation of symmetric and periodic
boundary conditions (PBCs) in speeding up the computations and in
turn enhancing the computational accuracy of the simplified geome-
tries. Using the conditions of symmetry and periodicity we can take
into account only two cylinders. The heat transfer significant influ-
ence on the fluid flow behaviour with no impact of the magnetic field
is investigated in [58].

In many technological applications it is important to mix an elec-
troconductive liquid, using various magnetic fields.
In papers ([49],[50],[51], [52]) we had modelled cylinder form elec-
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trical heat generators with six or nine circular conductors-electrodes.
In this work we analyze different types of conductors, with the forms
of bars and they are placed parallel to the cylinder axis in the electro-
conductive liquid. It means that in distinction with the case of circu-
lar electrodes here we can’t assume the axis summetry and we must
consider full 3D mathematical model based on the system of Navier-
Stokes equations.

Let the cylindrical domain 2 = {(r,z) : 0 <r<R,0< ¢ <27,0<
z < Z} contain conducting liquid-electrolyte, where R, Z are the radius
and length of the cylinder. The alternating current is fed to N discrete
conductors of forms of bars, which are placed parallel to the cylinder
axis in the liquid.
The current creates in the weakly conductive liquid-electrolyte the ra-
dial B, and the azimuthal By components of the magnetic field as
well the axial component of the induced electric field E,, which, in its
turn, creates the adial F, and azimuthal ¥y components of the Lorentz’
force.
For calculation of the electromagnetic fields outside the electrodes,
the averaging method over the time interval 27 /@ = 1/f is used. The
averaged values of force < F, >, < Fy > give rise to a liquid motion,
which can be described by the stationary Navier-Stokes equation.

11.2 Calculation of the electromagnetic field and force:
A. Buikis, H. Kalis, 2002 [51]

Applying the Biot-Savar law we obtain the azimuthal component of
the magnetic field B and axial compoent of vector potential A created
by the current of density j from one infinite long circular conductor
L={r<a,0<¢ <2m, —c <z < 4oo} with radius a in following
form [47]:

uja*
2

_ uja’

o Ar0) =

B(r,9) In(p),

mkg

where p =r > a, Ul = 47r10_7m

vacuum.
For the limit2 case when the radius of the conductor tends to zero the
magnitude 5 must be by ﬁ replaced. If the bar type electrode is with

is the magnetic permeability in
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finite length z € [C, D], then the azimuthal component of the magnetic
field in point P out of electrods is in form

B(P) = :‘Ti)(cos(al) +cos(a)),
where a; = ZPAB, 0, = ZPBA. If o and o tends to zero, then we
obtain the previous expression. The magnetic field inside the electrode
is not considered.
For the circular conductor L = {r—r; < a,; — ; < ¢ < ¢;+ 0, —o0 <
z < +oo} in the polar coordinates (r, @) follows that

'iaz 'iaz
Bi(r.9) = 5505 Al 0) = =555 In(py),

where p; = \/(rl2 +r2—2rricos(¢ — ¢;)), ; = arcsin(a/r;), (ri, ¢;) is
the polar coordinate of the centers of circular wires L;.
In the cases of alternating current

Ji=jocos(wt)+ (i—1)0),i=1,N. (11.1)

Here jo = # is the amplitude of density, ® = 27z f, f are the angular
frequency and frequency of the alternating current, 8 = const is the
phase (usually 8 = 1200, f = 50Hz), t is the time and [ is the effective
current intensity . We can consider that the azimuthal vector B;(r, ¢)
as regards to the planes point (r;,¢;) can divide in the summ of two
vector components B,.;, By ; ,where B,.; = B; sin(0;), By ; = B;cos(0),
o; —is the angle between the vectors B; and By ;. Then

cos(as) = ricos(¢ —¢;) — V’ sin(0) = risin(¢ — ¢i)‘
pi Pi
We can see that
X 10 lan)’i
leBi = ;E(TB;’J') + ; a(P =0.

Therefore we obtain two components of the magnetic field induced by
each current wire L; in following form
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Bilr0.0) = i risin(o — ).

. (11.2)
By i(r,9,1) = “]l’) (ricos(¢p — ;) —r),i=1,N.

Coresponding axial component of vector-potencial A(B = rotA) is

: 2
AZ,i(rv¢>t) = _.ujzla ln(pi)7 (113)

because
1 8AZ, 8AZ7,-

i — a¢7(])l__ ar'
From Ohm’s law follows that the axial components j, of the vector of
induced current density is

jz,i = —GaAU‘/al‘,

where o is the electric conductivity.

From the vector of electromagnetic (Lorenz) force F = j x B we can
obtain the radial and azimuthal components F. = —By j;, Fy = B j;
as the summ of all induced felds

B¢—ZB¢,,B _ZBFHJZ Z]zz (11.4)

i=1 =1

Therefore , we obtain

E(r,9,1) = KoZﬁszl o jes(t),
{Fwn¢¢>=sz%:nxpwﬂ, (1)
where
Ko = (az'gjo)zcrw,cs(t) =0.5sin(2ot + (i+j—2)0)+0.55in(0(j—1i)),
o - _ln(pi)(rjcos(q) —0¢;)—r) Bli— In(p;)r;sin(¢ — q)j)
i,j — 3 yPij —

pj pJ

Similarly, the source term for heat transport equation has the form

N
J(ro.1) =Ko Y. 1 ss(t), (11.6)
ij=1



336 11 Some application of magnetic field influence on viscous incompresible liquid

where

Y.j=In(p;).In(p;),ss(t) = —0.5cos (2wt + (i+j—2)0)+0.5cos) 0 (j —

Denoting A; = In(p;), gives

AaA ”
¢71,]

8Aj . rjsin(¢ —¢j) BAJ- . _I”jCOS(¢ —¢j) -

¢ p;  or p;

12717

oci,]_A 9Aj ﬁ,, =AA

Jo

By averaging quantities in the time interva we obtain

< F(r,9) >= 0.5KoSy,
< Fy(r,0) >=0.5KoSb, (11.7)
< j(r,¢) >=0.5Kgc S},

where

S = Z sin( 0)a; ;,S N— Z sin((j—1)0)B;.j,Sk N = Z cos(

i,j=1 i,j=1 i,j=1

We can see that

N-1 N—k R Nk
Sy=2) sin(k@) Y GixtisSy =2 sin(k0) Y Bjs+i,
k=1 i=1 =1 i=1

—1 N—k
SY —ZZCOS (k6) Z}’,k+,+2%z,

where oA 94
~ e R Wt
0; j = —0.5(4; 3, Aj 8r)’
_ 1., 0A; 0A;
Bij= —0-5;((Aiw —Ajw)-

Having calculated the axial component of the curl of force vector

1 8(rF¢) JF, _ 8]z B¢ 8]Z
f=rotk = r< ar 8(]))_ "or + 9(})

i)).

)0)Y:.;-
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we analogously obtain its average value as

< f(r,¢) >=0.5KoS, (11.8)
where
SN = Zsm 0ij,
1.0 d
6, = [ ( Bu}) (p(o‘w)] = 8i,j — 8jis
gii _ risin(¢ — ‘l’z)(”JCOS(‘P ‘PJ)_r)
l,] -

p?p?

11.2.1 The mathematical model

The stationary flow of incompressible viscous liquid in a cylinder is
described by the system of the Navier - Sokes equations, which are
given in the cylindrical coordinates (r, ¢,z) [48]:

(M(V.)=—p~ 'L +vAV,
M(V,)—r 'V =—p1 L+
V(AV, — 12V, — 21~ 28V¢)+p <F>

M(Vy) 41~ 1Vrv¢——( R 1§§+
V(AV, —r 2V +2r- 2av’)—l—p <Fy >

ArVy) | 9Vy) | (V) _
"or T9 Tz =

(11.9)

Oﬂ-

Y

Here V,.,V,,V, are the radial, axial and azimuthal components of ve-
locity vector V, depending on the coordinates r, ¢, z; and A is Laplace
operator,
82 g 32

Ag=r 12— 225647906

§=r )T g T o
< F, >,< Fy > are the components of the external avereged force
<F >,

10,0
l(_g

0 0 0
&4y, —g+vZ g



338 11 Some application of magnetic field influence on viscous incompresible liquid

are the convective parts of the equations , p, v are the density and
kinematic viscosity, p is the pressure, g = V,;Vy; V. .

The liquid has the following parameters:
kinematic viscosity vV ~ 10’5”?72, density of liquid p ~ 1000% and
the electric conductivity ¢ ~ 1000Q~'m~1.

The parameter Ky = 1, radius R of the cylinder is 0.035m, the length
Z of the cylinder is 0.35m, the density of the current amplitude jy ~
108% and the radius a of the elektrodes is 0.005m.

At the inlet of the cylinder we assume an uniform velocity Uy = 0.17.
On the walls (the surfaces of the cylinder and electrodes) we have the
non-slipping conditions V = 0. ‘

In the cross-section z = const we assume that V, = 0, % =0 for
all j > 1 and therefore we can consider the 2D problem. In this case
by the elimination of pressure from the second two equations of the
system of PDEs (2.1) we obtain

M(@®)=v(Ad+p < f>, (11.10)

where @ = r~1(9(rVy)/dr — AV, /¢ is the axial component of vec-
tor’s curlV or the function of the vorticity, f is the axial component
of the vector’s curlF.

The stream function y can be determined with formulas

Vo=r 1o Vy = — = (11.11)

Then from the equation of continuity and from vorticity function it
follows, that
D=—-Ay. (11.12)

From (11.10, 11.12) follows the system of two PDEs for solving the
vorticity function @ and stream function y:

{r‘lf((b,w)zvmup—l < f> (11.13)

where J(@,y) = (d@/dr)(dy/d¢p) — (d@/Id¢P)(dy/dr) is the Ja-

cobian of the functions ¥ and @.
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In the 2-D case we have the following boundary conditions:

1) the conditions of periodicity g(r,0) = g(r,27), aga(;,o) = agg;;”),
where g = y; ®

2) the non-slipping conditions on the walls y = dy/dn = 0, and spe-
cial conditions for vorticity function @ = ®,,, where ®,, is the value
of the vorticity on the walls (the modificated Wood’s conditions [49])
which characterizes the non-slip of the liquid on the wall, n is the
external normal on the walls surfaces.

11.2.2 Some numerical experiments

Calculations and graphic visualization were made with the help of
the computer programs MATLAB and FLUENT. We consider 3 con-
ductors (N = 3) placed parallel to the cylinder axis creating the
regular triangle with following coodinates of their center (ry,¢;) =
(r0,0), (r2,¢2) = (r0,120°), (r3, ¢3) = (r0,240%),rg = 0.02m.
IfN=20= 717,(1‘1,(])1) = (ro,O),(rz,(])z) = (r0,7r) then < F, >=<
2.2
. 2o % rg+re—2rrycos(¢) .

qu >_O’<]Z >—05K()GCOS2 m In this
case the Lorenz’ force is zero, but the heat source can be influence the
temperature distribution in the liquid.
The phase is 27t/3 and the frequency is 50Hz.

In this case 6 = 2%, sin(0) = @, sin(26) = —\/Tg,cos(e) =cos(20) =
—%, and we corespondingly obtain

, where S;/ =1n?

S% = L0243+ 061— 03— 01— 032),
=S BiatBos+Bi—Bis—Ba—B2) (1114

Sa=N1+P2+VB3—Y2—13— Y3
SS =3(812+85+81).

In the Figs. 11.1-11.3 we can see the results of calculations obtained
by computer program MATLAB in cross-section z = const:

1) distribution of the averaged azimuthal Lorenz’ force < Fy > (Fig.
11.1),

2) distribution of the averaged radial Lorenz’ force < F,. >(Fig. 11.2),
3) distribution of the averaged axial curl < f > (Fig. 11.3).
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These results are nondimensionalized by reffering all the lengths
to ro. Then we have the nondimensional radiuss of cylinder and elec-
trods R/ro = 1.75,a/rop = 0.25. We can see the vortex formation in
the cylinder.

11.3 2-D MHD convection around cylinders:H. Kalis, M.
Marinaki, etc., 2012 [54]

Heat exchanger systems are employed in numerous industries. Steam
generation in boiler, air cooling within the coil of an conditioner and
automotive radiators represent just some of the conventional applica-
tions of this mechanical system. For the in-line arrangements of tube
banks (cylinders), fluid at prescribed mass flow rate of velocity Uy and
an inlet ambient temperature 7, much lower than the wall tempera-
ture T, enters the area from the left side and exits on the right. By
taking the advantage of special geometrical features, such as the in-
herent repetitive nature of the flow behaviour, the computational fluid
domain allows the possible exploitation of symmetric and periodic
boundary conditions (PBCs) in speeding up the computations and in
turn enhancing the computational accuracy of the simplified geome-
tries. Using the conditions of symmetry and periodicity we can take
into account only two cylinders. The heat transfer significant influ-
ence on the fluid flow behaviour with no impact of the magnetic field
is investigated in [58].

The viscous electrically conducting incompressible liquid moves
in the (x,y) plane in the Ox-axis direction between infinite cylin-
ders placed periodically in the plane. The cross-section of cylinders
is square in the plane. This process of the magnetohydrodynamics
(MHD) is considered with the so-called inductionless approximation
[53]. In [54] similar MHD problem without temperature and gravita-
tion is considered.

We model the external magnetic field as the Lorentz force term, ob-
tain the dimensionless stationary Navier-Stokes equations, set a com-
putational domain and formulate the system of three equations involv-
ing stream, vorticity and temperature functions. The distribution of
electromagnetic fields, forces, velocity and temperature around cylin-
ders has been calculated using the finite difference method,
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Seidel iterations and specific boundary conditions for vorticity func-
tion. Some numerical results are analysed.

11.3.1 Mathematical model

The external homogeneous 2-D magnetic field has two components of
the induction:
B = Bycos(a),B, = Bysin(ct), where « is the angle between the
Ox-axis and direction of the induction vector, By is the magnitude of
the magnetic field. The magnetic field creates the F(¢,x,y), Fy(t,x,y)
components of the Lorentz’ force F.
Considering the vector of Lorenz force F = JxB,J = 6(E + VxB),
we obtain J; = 6(E;+ By (Vysin(a) —Vycos(t))), Fr=—ByJ;, F,=
BXJZ;
where E, = const, J, are the azimuthal components of the electric field
vector E and the density vector of the electric current J, By, By are the
components of the magnetic induction vector B, ¢ is the electric con-
ductivity, V,,V, are the components of velocity vector V.

We analyze the flow depending on two settings of the homogeneous
magnetic field: the field parallel to Ox-axis (& = 0) and the transverse

field (o = 7). In the channel flow, incline magnetic fields for (o = ¢

and o = %) are also examined.

I8
The z-component % — aal;x of the vector curlF =V x F affects the

liquid motion, which can be described by Navier-Stokes equations in
Boussinesq approximation and the heat transfer equation [54],[56]:

N+ (V.V)V = —IVp+ VAV + Be(T — To) + 5 JxB,

V.V =0, (11.15)
9T L (VV)T = £ AT + i

Jt ) PCp

|z
pCpo

where A is the Laplacian, p,T,0,p, v,k,C,, B; are pressure,
temperature, electrical conductivity, fluid density, kinematic viscosity,
heat conductivity, specific heat, acceleration due to gravity, volumetric
coefficient of thermal expansion, 7j is the initial fluid temperature,
g = g(sin(fB),—cos(p),0) is the gravitation, g is the gravitational
acceleration, f is the angle between the Oy-axis and direction of the
gravitation.
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The equations (11.15) were made dimensionless by using charac-
teristic values L (side length of a square), Uy (velocity), By (magnetic
field), Py = ng (pressure), Ly/Vp (time), T,, — Ty (temperature), UpBy
(density vector of the electric current), where Ty, T,, are the initial tem-
perature in the fluid and temperature on the cylinders.

Using the vorticity function § = %‘3 aa‘;x one obtains

' Y ) ) .
zax; LV, = —a_ij — L% 4 Grsin(B) - Ssin(a) ji,
V) +CV aP_|_Ié%——Tcos(B)—i—Scos(Ot)jz:

T _ 1 Kr 2
+anx+Vya—y—EAT+ Pe )z

(11.16)
8Vx +

where j, = e; + Vysin(a) — Vy cos(x), e; is the dimensionless form

of azimuthal component for electric current density and electric field,

p=p+0.5V2

Re = UOLO S = oBiLy , Gr = M are Reynolds, Stewart and
pUy \%

oBJL3UZ
Grashof numbers, Pe = PrRe,Pr = = 0070

k(T T)
number and heat source parameters.
The hydrodynamic stream function ¥ can be determined by rela-
tions

are Prandtl

V, = %’,Vy = —— +. Eliminating the pressure from (11.16), one ob-
tains
d .
e —J(w,§) = 3:A8 — Z5( cos(B) + 2L sin(B)) + SF,
a_ (Wﬂ ) A T + Pe .]z ’

(11.17)

92 .2 02
where f = sm(ZOt) axay + cos (a)a—x‘;’ + sin (a)a—yg’
is the z-component of the vector curlF,

J(y,v)= Tx dy  dy ox is the Jacobian of the functions y,v,v=_;T,

J.=e;+ 3_137 is the derivative in the direction /5 = (cos(a),cos(m/2 —
«),0).
Using the boundary conditions (BCs) of symmetry and periodicity,

we can consider only the domain containing quarters of two cylinders
[60].
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For in-line arrangement of cylinders (PC) we consider the do-
main
Q = QU (see Figs. 11.4, 11.5), where Q) = {(x,y) : [; <x <
L,0<y<L},
Q={(x,y):0<x<LLi<y<L},0<l1<lh<l,0<L;<L.
Here C; = {(x,y) :0<x<1;,0<y<L;}and
Cr={(x,y) : [, <x < 1,0 <y< Ly} are the quarters of cylinders,
L'={(x,L):0<x<I},L? = {(x,0) : [y <x <1} are the plane of
symmetry with BCs V;, =0, %—5 =¢=0,y=yyonL', y=00nL?
wl = {(X,Ll) 0<x< ll},W2 = {(X,Ll) h<x< l},

W3 ={(l1,y):0<y <L} and W* = {(l,y) : 0 <y < L} are the
walls of the cylinders with the non-slip BCs T = 1,V, =V, = v =0,
I, ={(0,y): Ly <y<L}istheinletand O, = {(l,y) : Ly <y <L} is
the outlet with the periodical BCs for v, {, T, Uy, Uy.

In the case of free convection yy = 0.

For the additional channel flow with symmetry (CFS),

L?> =W?> ={(x,0) : [ <x <} is the wall of the half-channel  with
non-slipBCs 7' =1,V, =V, =y =0.

We consider also the additional channel flow without symmetry
(CF) in the domain 2 = Q;J£2,|J 23 (Fig. 11.6), where
Qr={(x,y):h <x<h,0<y<Li},

Q) ={(x,y):0<x<I[,L; <y<L2},

Q={(x,y): [} <x<hL2<y<L},

Ci={(xy):0<x<lj,L, <y<L}and

Cy={(x,y):h <x<l,L—2<y< L} are the new quarters of cylin-
ders,

W2 ={(x,L2):0<x <[}, WO ={(x,Lp) : b <x <},

W ={(l,,y): Lo <y<L},W8={(L,y): Ly <y <L} and

WO ={(x,0): [ <x<hL},W9={(x,L):l; <x< L} are the walls
of the new cylinders and walls of the channel with the non-slip BCs:
Ve=V, =y =2xy,, T =1, (y=00nW?).

L, ={(0,y): Ly <y<Ly}istheinletand O, = {(l,y) : Ly <y <L}
is the outlet with the periodical BCs.

The cylinders are electrically non-conducting and [ [ j.dxdy=0.
From f(g—;’; +e;)dxdy =0, it follows that e, = — —L< [ ycos(n, I5)ds
Q 2Q

or e. — — Isin(a)
€= TLL-)HIL-L)
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For ypy > 0 we have the direct fluid flow in the direction of the
positive Ox-axis with the fixed dimensionless fluid volume Q = yy,
but for Yy < 0 we have the opposite flow in the direction of the nega-
tive Ox-axis with the fixed dimensionless fluid volume Q = — . For
the channel flow without symmetry, yp = 2.

. P _
| 2On the walls we use the following BCs [55]: {" =y 52 + ("1 m=
where m is the number of iterations with % = 0, ¥ > 0 is the parame-
ter, n is the outer normal on the walls.

11.3.2 Physical parameters.

We consider following parameters for liquid metals (lithium, steel,
mercury) and electrolyte [59] (Table 11.1).

Table 11.1 The physical parameters p,Cp,V,k, o, Pr

Substance | Ty~ T, [K] [p[%4]|C, [ ]| vI™] [kl ] |0l os]] Pr
Lithium | 500—700 | 500 | 4000 |l.e—6| 45 |l.e+7|0.04
Mercury | 300—500 [13000| 140 |l.e—7| 10 |l.e+6]0.02
Steel {1600 —1800[ 7000 | 400 [1.e—6| 60 |7.e+5|0.04

Electrolyte| 290—370 | 1100 | 4000 |l.e—6]| 1.1 100 | 4.0

The characteristic length scale is Ly = 4.e — 3m, the magnitude of
the uniform flow velocity Up = 1.e —2°¢. The applied magnetic field
is
By =+/5/40€10,0.8], T,S € [0,25], Re = 40. To obtain dimensional
values, we need to multiply the dimensionless values by the following
scalar factors:

1) the values of velocity with Uy = 1.e — 2,

2) the vorticity with Uyp/Ly = 2.5,

3) the stream function with UpLy = 4.e — 5,

4) the difference of the temperature T — T with 7,, — Tp.

For modelling, we chose following parameters: ; = 2.e —4,Re =
40,5 = 0;2.5;25, and Gr = 25000,

Pr =10.02,§ = 0;2.5;25 for liquid metals, Gr = 11000, Pr = 4 for
electrolyte. The heat source parameter K7 = l.e — 1357 € [l.e —
12,1.e — 6] is negligible.
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11.3.3 Numerical algorithm for solution of the problem

We consider an uniform Cartesian grid ((N+ 1) x M).
For cylinders, arranged in-line
D) Q' ={(xi,yj), xi = (i— D)k, y; = (j — Dh},i =N, Ny, j =1, M,
(Ny—1V)h=1;,(M; —1)h =Ly,
2) Qb= {(xhyj)v-xi = (l_ 1)h7yj = (]_ 1>h}7l: LN+1, j=M,M,
(N—=1Dh=04L,(M—1)h=L,
where /1 = NllLl = N;il = lel = Mlil = M]LL
to x,y indices with the mesh spacing 4.
For the channel flow without symmetry, we use twice as much grid
points in the y-direction.

Equations (11.17) in the uniform grid (x;,y;) are replaced
by difference equations of second order approximation in a 5-point
stencil and the numerical calculations are made using Seidel iterations
with under-relaxation for vorticity and temperature (see Appendix,

where ¥, =~ y(x;,y)), G j =~ §(xi,v;), T j = T (xi,y})).

7 Subscripts (i, j) refer

11.3.4 Some numerical results

Numerical results are obtained for

L =05bL=15,l=2,L=2,1,=1.5,Ly =0.5 (channel flow with-

out symmetry (CF)), L = 1,L; = 0.5 (channel flow with symmetry

(CES)), Re = 40,

§=0;2.5;25,Ha’> = 0;100; 1000, Pr = 0.02;0.7;7.0, Gr = 25000; 11000,

B=0:x%,0=0,5;£%, 0,01, €[0.1,0.5].

The calculations and their graphical visualization were made by means

of the MATLAB software for 2 different grids:

1)h =0.0125,N; =41,N; = 121,N =161,M; =41,M = 81,

2)h = 0.00625,N; = 81,N, =241,N =321,M; =81,M = 161.

For default calculation we use the grid no. 1 with N = 161, M = 81.
The iterative process with maximal errors < 1077 for¥ and < 10~4

for { and temperature (the number of iterations € [10000, 100000))

depends on the parameters.
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11.3.5 The flow with symmetry around infinite cylinders - PC.

In this case we consider = +£2, a =0;%.

If Re = 40,5 = Gr =0,Pr =0.02, »; = 0.4 then depending on the
number of iterations K we have corresponding minimal value of
Y = —-0.048

(K =10000),—0.051 (K =20000),—0.05237 (K = 50000), —0.052384
(K = 100000).

In the corresponding figures for Pr = 0.02 we can see the levels of
stream function for liquid metals ¥ = const, temperature T = const,
velocity V = const and vorticity § = const. In Figs. 11.7-11.9 the dis-
tributions of temperature and the levels of the stream function are rep-
resented for S=Gr=0,5=2.5,

Gr =0,a = 5. We can see that the vorticity between cylinders de-
creases.

In Fig. 11.10 we represent the levels of stream function by S =
25,Gr = 0,a = 7. We can see that the flow has no vortexes. Fig.
11.11 shows the levels of stream functions by § =25,Gr =0, = 0.
The vortex between the cylinders has decreased. Figs. 11.12, 11.13
illustrate the levels of vorticity and temperature for a = %,
Gr=25000,§=2.5,=7%.

For Gr € [0, 100000], B = 7 /2 one observes small change of flow
and temperature.

For large value of Stewart (S) number on the walls the Hartmann
boundary layers developed and the flow is vortex free.

In the Table 11.2, the maximal and minimal values of dimensionless
Vi, Vy, € are presented, namely
Mvx, mvx, Mvy,mvy, M{ ,m{; minimal value of ¥ : my and maximal
value of V for B = /2.
The following Figs. 11.14, 11.15 represent the results of calculation
in PC for electrolyte by Pr =4, 00 = 0; 7,5 = 0;2.5,Gr = 11000.
If « =0,5 =2.5, then we have small velocity between the cylinders.
Table 11.3 contains the correspondent values for Pr = 4,Gr =

11000, 8 = /2.
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Table 11.2 The values of Gr, S, o, Mvx, mvx, Mvy,mvy, m¥ m& ME,V

Gr | S |o|Mvx|Mvy| mvx | mvy | m¥ | m{ |ME| V
0 0 —]2.92|0.27| —.25 | —.20 [—.0524|—-55.7| 6.5 |2.92
0 |25 % 2.45|1.43|—.006|—.505|—.0014| —166 | 8.3 |2.45
0 25 % 2.61(293 0 |—-1.66f O —411(9.5(3.44
2.5¢+4| 0 |—|2.91] .27 | —.24 | —.20 |—.0520|—55.8| 6.5 [2.92
2.5¢+4(25|0|2.91| .16 | —.07 | —.10 |—.0148|—46.7|6.75(2.91
2.5e+4|2.5 % 2.45|1.43|—.006|—.506|—.0014| —166 | 8.4 (2.45

Table 11.3 The values of S, o, Mvx, mvx, Mvy,mvy, m¥ ,m& M,V

S |o|Mvx|Mvy| mvx | mvy| m¥ m§ |MC|V

0 [—|2.84]|0.35| —.23 |—.17|—.04778|—62.6| 6.8 |2.84
2.5|17]2.42(1.51|—.005|—.54| —.0012 | —176| 8.7 |2.42
251%12.74| 51| —.18 |—=.15| —.0329 | =73 |7.25(2.74
2.5(0]2.84| .34 | —.15 |—.12| —.0335 |—61.3| 6.9 (2.84

11.3.6 The channel flow with symmetry - CFS

For liquid metals and

Pr=0.02,Gr € [0,100000], B = /2, we have small change of flow
and temperature.

If § = 0,Gr = 0;25000; 100000, then we have following the minimal
values of ¥ = —0.03706;—0.03707; —0.03714. In the Figs. 11.16-
11.19 we can see the results by Gr = 25000 and S = 0;25, =
7/2;0,Pr=0.02.

11.3.7 The flow without symmetry in the channel - CF

In the Figs. 11.20-11.25 we can see the results of calculations in the
channel flow without symmetry for Pr = 0.02, Gr = 25000 and S =
0,25, =m/2;n/4;37/4;,0.8 = 0;+7/2.

Table 11.4 contains the values for Pr = 0.02, Gr = 25000.
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Table 11.4 The values of 3,5, &, Mvx,mvx, Mvy,mvy,m¥',m{ , M,V in CF for Pr = 0.02,Gr =
25000

B | S| o |Mvx| Mvy | mvx | mvy m¥ ml (M| V
0 |0]|—(2.93]|0.338] —.21 | —.23 | —.0278 |—58.8|51.0(2.92
0 125 % 2.6312.84| 0 |[-2.89 0 —383420|3.54
0 |25| §13.54| 2.42 |—.042|—2.02|—7.6e — 4| —400| 245 |3.83
0 [25 % 3.54(2.02 [—.041|—-2.42|—5.5¢ —3| —244 [ 405]3.89
—2125| §3.55| 2.43 | —.041|—2.03|—5.5¢ — 3| —427| 259 |3.84
7125 % 3.55(2.03 |—.041|—2.43|—-5.5¢ — 3| —245| 407 |3.89
% 25 % 2.631293| 0 |[-2.93 0 —406|423|3.57
—zos| Z 257/ 2.81| 0 |-281] 0 |-381|392|3.44

11.3.8 The free convection flow in CF, CFS and PC

In the Figs. 11.26-11.43 we can see the results of calculations in
the free convection channel flow without symmetry (CF) for Pr =
0.02, Gr = 25000, S = 0;25, o« = ©/2;0, B = 0;7/2 and for free
convection in PC, CFS by § = 0.

In the Table 11.5 the values of free convection are represented for
Pr=20.02,
Gr = 25000 for CF, PC and CFS.

Table 11.5 The values of 8,5, a, Mvx,mvx, Mvy,mvy,m¥,m{ ,M{,V for free convection and
Pr=0.02,Gr = 25000

B S|la| Mvx | Mvy mvx mvy my m{ | M¢ 1%

CF, 5 | 0|—| .0031 | .0034 | —.0047 | —.0034 | £.0012 | —.218 | .218 | .0047
CF,—%| 0 |—| .0047 | .0034 | —.0031 | —.0034 | £.0012 | —.218 |.218 | .0047
CF,0 25| % |7.7e—4| .0027 |-7.7e —4| —.0017 |£4.3e—4|—.161 | .161 | .0027
CF,% |25| 5 |3.2¢—4|3.8¢ —4|—3.1le —4|-3.8¢ —4|+9.8¢ — 5| —.037 | .037 |3.9¢ — 4
CF,0 |25[0 |2.5¢—4|1.9¢ —4|—2.5¢ —4|—1.9¢ —4|£5.8¢ — 5|—.0264(.0264|2.6¢ — 4
CF, % (25| 0| .022 .006 —.029 —.006 | £.0044 | —1.44|1.44| .029
CF,0 |25| % | .0019 | .0021 .0022 —.002 |£6.8¢—4| —.178|.182 | .0029
CF,0 |25 %ﬂ .0022 | .0021 | —.0019 | —.002 |[£6.8¢—4|—.182|.178 | .0029
PC,% | 0 |—| .0046 | .0055 | —.0073 | —.0055 .0019 | —.245|.039 | .0073
PC,% (2.5 % | .0021 | .0023 | —.0025 | —.0023 | 2.e—5 | —.119|.014 | .0025
PC,% 12,5/ 0| .0031 | .0028 | —.0046 | —.0028 .001 —.198 | .022 | .0046
CFS,%| 0 |—]| .0029 | .0033 | —.0045 | —.0033 .0011 | —.144 |.0251| .0045

The free convection velocity for electrolyte for Pr = 4,5 = f8 =
0,Gr=110001is small (V =4.e —4, m¥ = +£9.4¢ —)5).
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11.3.9 Appendix

The difference equations of second order approximation in 5-point
stencil are in following form:

(4% ;=S¥ ;+h°G; j,

I%Ji’j(gl’C) _24§i’j+SCi’j: 2 72 - 2

I(-;Irc;l ((sin(a)) dy‘ﬁj.-l—(cos(oc)) d;¥ j—0.25sin2a)d; ¥ j)+
e (cos(B)diT; j +sin(B)dy T ),

Pei j(W,T)—4T; ;4 ST, j = —Krh*(e,+

(A~ (cos(a)dy W, j + sin(a)dy ', j)?,

(11.18)

where Sq; j = gi j—1 + qi,j+1 +qi-1,j + qi+1,j,9 = ¥ T; €,
W =2% = W1 j— W1, 3 =2 — W — W,
R AEL AR R ARTREL AT
diqij =0.5(qit1,j — qi-1), dyqi,j = 0.5(qi j+1 — gij-1), g =¥ T,
Jij(¥,q) = (Fir1,j— ¥ie1,)(qij+1 — i j—1) = (@is1,j— Gi—1,j) (F jr1 —
%,j—l )a
q=2C:T.

The numerical calculation of (11.18) is evaluated using Seidel iter-
ations with under-relaxation for £, T functions :

m=o G+ (=) T = a)leZJ+(1—a)2)Tm‘1, m=1,2,-

where Z_f < TZ are the grld functlon value in central mesh points, ob-
tained for m- th iteration, @, @, € (0, 1) are the relaxation coefficients.
The discrete BCs [55] with O(h?) on the walls w are computed in
following form: {/"' = ( 4pm 4 @m 439, 4 !
where ¥ |, W , are the Value of ¥ ; for one and two steps h distant
from the wall in the inner normal dlrectlon. On the corner of wall the
value of { is equal to average value of the two nearest { values of the
wall.

The Velocity components are obtained in following way:

Vxij=45(W =), Vyij=—4 (W1 =),V = V()2 + (V)%

The d1mens1onless fluid volumes between two section x = 0,x = [, =

L
0.5(l1 + 1) are Q1 = [Vi(0,y)dy =gq,
L

L
0> = [Vi(Li,y)dy = q, g =1 (for channel flow without symmetry q=2,
0

for opposite flow the fluid volume is equal -q).



350 11 Some application of magnetic field influence on viscous incompresible liquid

11.4 2-D MHD between cylinders: A. Buikis, H. Kalis, 2014 [50]

The viscous electrically conducting incompressible liquid is located
between two infinite coaxial cylinders (rings). The vortical electro-
magnetic force drive magnetohydrodynamic flow between the cylin-
ders. The distribution of electromagnetic forces are induced by two
different way.

1. In internal cylinder parallel to the axis are placed metal conductors-
electrods of the forms of bars. Those conductors the alternating cur-
rent is connected. The water is weakly electrically conducting liquid
(electrolyte). This is the mathematical model of one devices for elec-
trical energy produced by alternating current in production of heat
energy.

2. The distribution of electromagnetic forces are induced by the
external magnetic field (homogeneous, radial, axial, dipolar) imposed
in the cross-section of the cylinder. The surfaces of the cylinders with
different angular velocity rotate can.

The distribution of electromagnetic fields, forces, 2-D magnetohy-
drodynamic flow and temperature
induced by the system of the altenating electric current or of external
mabnetic field in a conducting cylinder has been calculated using fi-
nite difference methods.

An original method was used to calculate the mean values of electro-
magnetic forces and circulant matrices.

It is important to mix an electrically conducting liquid, using
various magnetic fields in many technological applications ([48], [56],
[57], [63], [49], [51D).

Let the cylindrical domain between two infinite cylinders Q = {(r, ¢,z) :
ro<r<R,0<¢ <27, —o0 < z< oo} contain viscous electrically con-
ducting incompressible liquid, where rg, R are the radiis of the coaxial
cylinders.

In this paper we consider two way for obtaining the magnetic fields in
this cylindrical domain.

1. The new type of heat generator is ecologically clean, compact
and effective (see 2 patents [61], [62]). In papers ([49],[50],[51], [52])
are modelled cylinder form electrical heat generators with six or nine
circular conductors-electrodes placed on the surfaces of the cylinder.
In this work we analyze other type of conductors. They have forms of
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six bars and are placed parallel to the cylinder axis in the central part
of the cylinder. In the (Fig.11.44) we can see the real electrical heat
generator. In [63] is considered the coresponding 3-D problem, using
computer program FLUENT.

The alternating current is fed to N infinite discrete conductors of

forms of bars, which are placed parallel to the cylinder axis in the do-
main r < rop < R. In the Fig. 11.45 we can see the mathematical model
with 6 conductors (N = 6.)
The current creates in the weakly conductive liquid-electrolyte the ra-
dial B,(r,¢) and the azimuthal By (7, ¢) components of the magnetic
field as well the axial component of the induced electric field E,(r, ).
For calculating the electromagnetic fields outside the electrodes, the
averaging method over the time interval 27/ @ is used (o is the angu-
lar frequency of the alternating current).

2. For second way magnetic field we analyze the 2D viscous elec-
trically conducting incompressible flow between two infinite coaxial
cylinders by different type of the external magnetics fields and angular
velocity which the surfaces of the cylinders rotating can. This process
is considered with the so-called inductionless approximation [56].
The external 2D magnetic fields are added in following form:

1) uniform magnetic field with the radial B,(r, @) = Bo(1 —r~2ay) sin(¢)
and the azimuthal By (r, @) = Bo(1+7r"2ay ) cos(¢) components of the

. . . ~1)r}
induction for magnetic field, where a;, = (u m +ir" S = %, U, Uo — are

the corresponding magnetic permeabilitys in the liquid (R > r > rp)
and in the internal cylinder (r < rp) (if u = 1 then this field is ho-
mogeneous and parallel to Oy axis [57], if @ = 0,y = oo then the
internal cylinder is ferromagnetic, if [t = oo, lt] = oo then the liquid is
ferromagnetic),

2) radial magnetic field with the radial B,(r) = By/r component
(By =0),

3) axial magnetic field with the azimuthal By (r) = Bo/r component
(B, = 0), this field can be obtained when the direct current is fed to
internal cylinder parallel to Oz axis,

4) bipolar magnetic field with the radial B,(r,¢) = Bor—2sin(¢) and
the azimuthal By (r, @) = —Bor~2cos(¢) components,

5) the sum of axial and uniform magnetics field.

Here By is the scale of the induction for magnetic field. These mag-
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netic fields with the vector of induction B are solutions of the follow-
ing homogenous Maxwell’s equations divB = cur/B = 0.

For the visualization of the magnetic fields the following magnetic
stream function A, is used (the component of the vector potential):

1) A, = r(1+7r2ay)cos(¢) for the uniform magnetic field, see Fig.
11.46 (1 =0); Fig. 11.47 (U = o0),

2) A, = —r~ ' cos(¢) for the bipolar magnetic field, see Fig. 11.48

3) A; = r(1+r2ay)cos(¢) — In(r) for the sum of the uniform and
axial magnetic fields, see Fig. 11.49 (1 = 0)

4) A, = ¢ for the radial magnetic field,

5)A; = —In(r) for the axial magnetic field,

The surfaces of the cylinders can correspondingly with angular veloc-
ities €2, 2| rotate.

The both type of magnetic fields creates the radial F,(r,¢) and
azimuthal Fy(r,¢) components of the Lorentz’ force F. The axial
component of the vector’s curlF give rise to a liquid motion. The sta-
tionary 2D flow of incompressible viscous liquid between cylinders is
described by the system of the Navier-Stokes equations in the polar
coordinates (r,¢),ro < r <R.

11.4.1 The mathematical model

The stationary 2-D flow of incompressible viscous liquid in a cross-
section of the cylinders is described by the system of the Navier-Sokes
equations in following form [48]:

(M(V,)—r*IVq)z 'L V(A -V, - 2r*23—g)+p 'F,
M(Vo)+r Vv =—(pr) "' 5+
(AV¢—r_2V¢+2r_2%—‘q/;)+p_1F¢

2 2

11.19)
Here V,.,V, are the radial and azimuthal components of Velocity( vector
V, depending on the coordinates ro; A is Laplace operator, Ag =
r_l%(r%) +r 23(;; ,M(g) = V & r 1V¢ 3¢ is the convective parts
of the equations,
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p, v are the density and kinematic viscosity, p is the pressure, g =
Vr;V(p .

Determined the vorticity functions or the axial component of vec-
tor’s curlV with formulas @ = r~!(9(rVy)/dr — 9V, /d¢) we obtain

~ ~_19dp _
—V¢,(D: p la[; la;;)_'_p 1Fr;
Vo= —p! —lggwar +p'Fy, (11.20)
a(rV,) +9(V¢) _
ar a9 —

where j = p+0.5V2.

1. For alternating current the averaged values of Lorenz force
F,, Fy are obtained, applying the Biot-Savar and Ohm’s laws [63] in
following form:

Fy(r,¢) = 0.5KoS%,
B (11.21)
F¢(r, o) = O.SK()SN,
where
Z sin( ch,S@ = Z sin((j—1)0)Bi,
7] 1 7j 1
~__In(pi)(rjcos(¢ — ;) —r) , _ In(pi)r;sin(p — ¢;)
al,j - 2 aBl,j - 2 )

P; P;

2. .
Ko = (“52) 0w, u = 4m10~” "21//;% is the magnetic permeability in
vacuum, o is the electric conductivity,

Jjo 1s the amplitude of alterating current density
ji = jocos(ot)+ (i—1)6),i=1,N, (11.22)

6 = const is the phase (usually 8 = 120° and the frequency of the
alternating current is 50Hz)

(ri, ¢;) is the polar coordinate of the center for wires

L= {r—r,- <a< ro,q),-—a,- < (P < ¢i+ai,—°° <z< +°°} with radius
a,

pi = \/(ri2 +r2—2rricos(¢ — ¢;)), a; = arcsin(a/r;).
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Similarly for averaged values of source term in heat transport equa-
tion [63]
Jj2(r,9) = 0.5Ky0wSY, (11.23)

where SY Zz] 1€08((j —1)0) %, ¥i.j = In(p;). In(p;).
Having calculated the axial component of the curl for force vector

f = rot,F,[63] the average value is

f(r.¢) = 0.5Ko83 (11.24)

where S5 Jsm((] 1)0)0; ;,

0ij = r[ar(’”ﬁw) ¢(0‘w)] = 8i,j — 8j.is
= Lisin(9 =g (rjcos(¢—9;)—r)

8i,j = pl pg .
On the walls (the surfaces of the cylinders r = R and r = rg) we have
the non-slipping conditions V = 0.

2. In the case of 2-D external magnetic field with components
B.(r,¢),By(r,¢) from the vector of Lorenz force F = o (E + VxB)xB)
[56] follows

F, = —GB(p (VrB¢ - Vq)Br +EZ), F¢ = GBr(VrB¢ — V¢Br —|—EZ>,

where E, = const is the azimuthal component of the electric field E.
The walls (the surfaces) of the cylinders r = R and r = rg can be
rotated with the velocitys Vy = rp€2p and Vy = RQ; corresponding
(V,=0).

For the 2-D problems the eliminating pressure p from the first two
equations of the system of PDEs (11.22) one obtains

M(®)=vA®d+p ' f, (11.25)

where f is the axial component of the vector’s cur/F.

The hydrodynamic stream function y can be determined with formu-
las

Ve=r g8V =~
Then from the equation of continuity and from vorticity function it
follows, that ® = —A .

From (11.25) follows the system of two PDEs for solving the vorticity

function @ and stream function y :
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{”_IJ((DJI/):VA(D+,5—1JC’ (11.26)

where J(@, y) = (0®/3r)(dy /) — (9®/3)(dw/dr) is the Ja-

cobian of the functions ¥ and @. Eliminated the functions @ from (
11.26), we obtain the PDEs of the fourth order

r Ay, ) =vAty -5 £, (11.27)

where J(Ay, y) is the Jacobian of the functions y and Ay.

In the azimuthal direction we have the conditions of periodically

Ill(ra 0) = V/(F,ZTL')’ &V;(q?o) — 31[/5%27[).

On the walls r = ryp,r = R we have the non-slipping conditions:

Y= %—‘f = 0 (for alternating current),

and the non-slipping and rotation conditions:

v =co, 3 = —r0Q, by r = ro; y = 0,%% = —RQ,, by r = R (for
external fields). The constant co can be determined from the second
equation (11.26) using the conditions for uniqueness of pressure p by
¢ =0and ¢ =27.

The steady energy equation reduces to the heat transport equation
for incompressible flow with source terms and with constant proper-
ties. The stationary distribution of temperature field 7'(r,¢) in a con-
ducting ring is described by the following boundary-value problem
for the heat transport equation:

derVJ(T, w) = kAT + 671 2
{pcr (T,v) +o07 'z, (11.28)

d

w = O,T(I’(),¢) =Tu,
where ¢,k are a corresponding constants of specific thermal capacity
(c= 4OOOkgLK) and coefficient of heat conductivity (k = 0.6-%),

jZ2 is the source term, 7, is the given constant fixed temperature.

The equations (11.27, 11.28 ) were put in the dimensionless form
scaling all the lengths to L = R (the radius of the tube), the velocitys
Vi, Vo to Uy, stream function ¥ to Yy = UpR, the induction B,, By of
magnetics field to By, the pressure p to Py = UO2 p and temperature? to
T,, where Uy = v /R (for alternating current), Uy = Rmax (£, Q1) (for
external fields). Further the denotes of all variables are unchangeable.
Then we have non-dimensional equations for the following iterations
procedure:
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A2yt — g1 g Ay w4 by £, (11.29)
AT(m+1) — p, r_lJ(T(m), W(m-i—l)) —Krj? .

where ag = 1,by = Ky = KoﬁL—j2 (Kg— the electrodinamics force num-
ber) for alternating fields,

ap = Re,by = Ha* = ReS ( Re = UpR/v,S = oB3R/(pUy),Ha =
v/ReS— the Reinolds, Stjuart and Hartman numbers) for external fields,
Kr = Ko7 sz — the heat sources parameter,

Pr= Cp v the Prandt] number,

m=0, 1,2 ...M;; — the iterations numbers.

The constant ¢q for external field can be determined from following
integral condition:

2
8(0
5-do = —Ha / Fpd¢ = 2nHa*naC, (11.30)
,
0
where F¢ = —B2nwy, N = ro/R,ax = &R/Uy. The constant C is

equal to 1(for uniform magnetic field), n ~2 (for radial field), O (for

axial ﬁeld), 0.51]_4 (for bipolar field).

The source function f for the external magnetic field is in following
form: 9? J? d d
f< ¢) B%3¥+B%¢ 28I2+ZB B¢r8r8¢+ (B‘pran; +Br ar )9_?’/—1_

dBy . By 0B P

(B, %2 + (%o ) 2.
We have followmg formulas for function f in every case of the mag-
netic fields: 5 5 5
1) f=s35in(29) 5 (‘9”¢ +52 cosz((p) zazz + 51 sinz((p)—w + (s4c08(9) +

S5 sinz((p))%—w— 56 sm(Zd)) ¢ for the uniform magnetlc field, where

S1 = P3,52 = Pi,83 = p1p2,S4 = 53/r,85 = 2paray,s6 = 0.555 +
Pl/’”a

p1= 14772 a“,pz—l—r_ ay,

2) f= rar(rar) for the radial magnetic field,

) f= 4 3 ¢2 for the axial magnetic field,

4 f=r" (—Sin(2¢)rara¢ + cos ((]))W—l— sin2(¢)a;,gf
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—rcos?(¢) +2 sin2(¢))%—z’+ ! sin(2¢)raa—";) for the dipolar mag-
netic field.

The procedure of iterations (11.29) together with the boundary con-
ditions is realized using finite difference approximation with central
differences.

In the linear case (J = 0) we have only one iteration. If the nonlinear
terms (convective terms J) is dominant ag >> 1, then the method of
underrelaxation is used with the parameter @, < 1.

11.4.2 The finite-difference approximations and numerical method

We consider an uniform grid (N+ 1 x M) :

Wy = {(ria(pj)? ri=nm + (l_ 1)hla ‘P] = jh27i - 15N+1a ] - 17M7
N+ Nhy = 1,Mhy =2x. Subscripts (i, j) refer to r, ¢ indices, the mesh
spacing in the i, j directions are h; and h;.

The stream function equation (11.27) in the uniform grid (7;, ¢;) is re-
placed by vector difference equations of second order approximation
on 5- point stencil:

A 2+ BY 1 +C¥+ DY +E¥ o+ FT=0,  (1131)

where ¥ are vectors -column of M-order with components y; ; =
W(’n+l)(ri7¢j)7j = laMai = 37N_ 17

A;, B;,Ci, D, E; are the cirular symmetric matrix of M-order.

This matrix can to give with the first rows in following form:

Ai = [ai,170707 -"70]7Bi = [bi,lvbi,270707 "~7bi,2]7

Ci = [Ci,17ci,27ci,370705 ""7Ci,37ci,2]aDi = [di,ladi,270707 "'7di,2]7

El' = [€i71,0,0, ...,O],

__ li-1.57i-05 __ Tit1.57i40.5
where q; | = =202 ;| = i)
l’l ririleh? ’ l’l ) riri+1h? ’
— ri-0.5 _ ri—0.5
— __Tritos 2 2 _ Tit0.5
diy = "0 (4/hF +2d2/ 1), diz = da 503,

Ci3 = rf4h£47€i,2 = _2d3/(ri2h%)’

Cil = d32 +2¢i3+ 1/(Vih§1)(rzz+o.5/ri+1 + rz'2—0,5/ri—1)7

dy=1/rf+1/r,do=1/r}+1/r} | d3=2/h3 +2/(r?h3).
(

FH is the vector-column with components 1}5 = —(aor; 1Jl-3~1) +bofij),



358 11 Some application of magnetic field influence on viscous incompresible liquid

j=1,M, where
Jij = gy (AW j = AW ) (Wi — Wijo1)—
(A j+1 =AY j—1)(Wit1,j— Wi—1,j)), is the approximation for J with
central differences,
Ay, ;= ﬁ(’”ﬁO.S(Wi—i—l,j_ Vi) —ri05(Wij— ll/i—l,j))Jr@(llli,jH —
2+ Yij-1)s fij = f(ri,9;).

For the external radial field f; ; = 0 and by the elements of matrix
b 1,ci1,d; are added respectively
—Ha2d4rlf_10'5 , Ha2d4(rl.:r10.5 + ri:I().5)7 —Ha2d4r;r10_5, where dy = 1/(r,~h%).
Similarly for the axial ﬁeld by the elements of matrix c¢;,c; are
added Ha? h2 7 —Hd? h2 7-

2T

For the umform magnetic field we have following approximation of

fij:
cos?(9;

52 hzz)(‘lfl,ﬁ—l 2‘/’1,]"“/’!,/ 1)+Sl Yit1,j— ZIViJ—f“Vi—l,j)""
sm(2¢)

SEm (Wi1,j01 = Vie1j1 — Vir 1j—1 + Wi1,j-1) +

. A' 2 .
(S4cos 2(¢;) +55 smz}E:P;)) (‘Vi—i—hj v j) 56 s1;1£lz;¢;) (%7j+1 - Wi,j—l)~

The heat transport equation (11.28) is replaced by vector difference
equations of second order approximation in 3-point stencil:

()(

ATy —ClLTi 4 Bl Ty + FF =0, (11.32)

where T; are vectors -column with components 7; ; ~ T (m+1) (ri,90),j=

1M,

Al;,B1;,C1; are the cirular symmetric matrix of M-order in following

form:

Al,‘ = [al,’71,0,0, ...,0],31,‘ = [bl,-yl,0,0, ...,O], Cl,‘ = [Cl,’71,C1,’72,0,0, ....,C1i72],
where

ri-0.5, Ti+0.5, 1
alj == h217b1l1 = - h217C112:_r2h%761i,1 =alj+bli1+2cl;p.
1

F is the vector-column with components
fl/ (Prr Jllj KTfliJ),j:l,M,
where
Tij= g (T j =T ) Wi = Wi jt) = (Tijn = T j1) (Wi —
Vio1,))
flij=j(ri,9;).
The boundary conditions for altenating field are replaced by differ-
ence equations of second or third order approximation. For the vector
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function ¥ using the 3-point (ry,r2,r3) or 4-point (ry,rp,r3,rs) sten-
cilsbyr=n,r=1
we have following second or third orders approximations:

¥ =0,% =0.25'%,

i1 =0, =0.25%_1,

ok ok ok ok ok ok ok ok ok ok ok K ok K ok Kk Kk Kok Kk % (11.33)
P =0,%=0.5%—1/9%,

i1 =0, =05%_1 —1/9%_».

Similarly for the vector- function 7; using the 3-point (ry,rp,r3) or
4-point (ry,r2,r3,rs) stencils by r = 1 we have following second or
third orders approximations:

(11.34)

Ty —0.25Ty_; = 0.75Ty .1,
Iy —0.25Ty_ 1 + 1/9TN72 = 11/18TN+1.

The boundary conditions for external magnetic fields are replaced
by difference equations from second order of approximation. For the
vector function ¥, using the 3-point (ry,72,r3), (rN+1,7N,"N—1) Sten-
cils by r = n,r = 1 we obtain following second orders approxima-
tions:

lPN+1 0, 'PN = 0 25(?’1\771 +2h10)1)

For the approximations of integrals by r = 1 using 4-point (ry,r2,73,r4)
stencil we3 obtam
9= H+ ,,3,2 + /M,

(ar3> 10 j — 15% ; + 6% j — W4 j — 6n ol ) /1y + O(h}),

(

(2 )1 = (3.5 j+4% ; —0.5% ; +3nwoh) /hi + O(h7),
co=Mu(¥1) = (lnoHa>C — (15— 4hr)M,(¥5) — (0.5hr —6) My (¥5) —
Mh(‘I’4) hinwy(6—3hr—hr?))/(3.5hr —10), where hr = hy /1, M),(¥,) =
M~ Z 1 e jr k= 1;2;3;4.

The Vector difference schemes(11.33,11.34) are solved by the Gauss
elimation method using the calculations of circulant matrix.

The calculations of circulant matrix
A=lay,az,...,ay],B=[b1,by,...,by|,C = [c1,c2,...,cy] and vectors-
column
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b= (by,by,....byy)",c = (c1,c2,...,cp)T can be carried out using
following formulae: 1) the matrix A invertion

1 M=t 2mkj 27k
B=A" lbk—M Zz)(ajcosvj—ﬁjsin MJ)/( +[3)
where Ocj:ZMola,Hcoszf,;J Bi=YY  ai s1n2MJ

2) the matrix A and B multlphcatlon

C=A.B,c;= Zakbs k1 7+ Z akbmts—kt1,5 =1, M,
k= ke=s+1

3) the matrix A multiplication with vector b

1 —

c=A.b,c;= ZaM s+k+1bk+zak s+1bg,s =1,
k=1 k=s

This algorithmus can be easily realized by MATLAB.

11.4.3 Approbation of numerical algorithmus

We consider for alternating field following linear test for the approba-
tion of the flow calculations by J = 0, f; ; = sin(¢;) :

P du(l
Ay = Kysin(9), w(n,9) = y(1,9) = ng’m = Wé 12 =0,

’
(11.36)

where Ay =r 12 d —(r %—‘i’)—i—r‘zg%, Ky = 300.

The solution of the test is in following form:
v(r,0) = 100sin(¢)(1/8C 1> +1/2C,rIinr + Cyr+ Car~ 1 4+1/15r%),

where

Cp = —2/15(n*(6In(n) —5) + (n + 1)(5 +61n(n) +6n*In(n)) —
5n°)/d,

Cy=1/15((n*+3n+1)(n—1)*(n+1))/d,
C3=—1/60(n°(1+n)+n*(5—12In(n)) —2nIn(n) —n*(5+2In(n)) -
(n+1)(142In(n)))/d,
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Cy=1/60(n(n* +n° —6n°In(n) — 1 —1))/d;
d=Mn+1)n"In(n)—n"+In(n)+1).

The linear test for the approbation of the heat calculations by Pr =
0, f1; j = sin(¢;) is in following form:

9T (1,9)

AT = —Krsin(9), T(n,¢) =Ta 2 0,—

=0. (11.37)

The solution of this test for Ky = 3 is
T(r,¢) =sin(¢)(Cir+Cor ' —r?),

where
Cr=Q2+n’+1Tn))/(1+n?),C = (20> +0° +T,n) /(1 +1?).
We obtain T'(1,7/2) = ((1—-n)>2n +1)+21T,)/(1+1n2) > 0.

If n =0.2,7T, = 0 then, using finite differece schemes (11.36-
11.37), is calculated maximal values (max |y|, max|T|) by different
order K of approximation and different N, M which are compared with
the tested values max |y | = 0.4361, max |T,| =T (1,7/2) = 0.86154.
We have following results:

I)max |y| = 0.4156,max |T| = 0.8645 for N=M=20 and K=2,

2)max |y| = 0.4266, max |T| = 0.8640 for N=M=20 and K=3,

3)max |y| = 0.4355, max |T| = 0.8618 for N=M=40 and K=2,

4)max |y| = 0.4360, max |T| = 0.8616 for N=M=40 and K=3.

Using first order of approximation for heat calculations by (N,M) =
(40,40) we have max|T| = 0.8242.

For the external magnetic fields we have two test for approbation of
numerical algorithmus. The analytical solutions with radial symmetry
by J = S = 0 in the following form can be used for initial conditions
of iteration (m = 0):

v(r) = 0.25r%In(r)Cy + Cy + In(r)C; + r*Cy, where
C1 = = (—=n*(ao + @) +20%In(n) (01 — ap) +n* @ + o1),

2n
Cy =~ TG (2In(n)en +(n” ~ Dev),

Cs =~ T 2n2n(n) ey + (0> — 1) (@) — @) —2In(n) @),
Cy=—Cy,dy = 1+n*—2n% —4nln®(n).

For the radial magnetic field we have the exact solutions of the
differential equations A%y = H aZ%(%’:) in the following form
v(r) = —0.5r? /Ha?>C) + C + r82C3 + r83Cy,



362 11 Some application of magnetic field influence on viscous incompresible liquid

where go = 1++/1+Ha?,g3=1—+/1+ Ha?. The constants C;,C,,C3,Cy
can be determined from boundary conditions.

11.4.4 Some numerical experiments

Calculation and their graphic visualization were made by means of
the computer programs MATLAB with n =0.2,N = M = 80.

The stability and convergence analysis of considered algorithm in this
paper are not presented. The exactness of numerical results are testing
with different numbers of grid points N, M. For numerical experiment
follows that by N=M=40 and N=M=80 the numerical results are co-
incident with 4 decimal place.

The number M;; of iterations and the underrelaxation parameter @,
are depending on the parameters Re,S,Ha, K" KT. This values are
determined for fulfilment the following inequalitys:

B maxw,m—i—l . wm| max ’Tm-i-l - Tm’

= <1047, = <107
“ max |y “ max |77+ |
11.4.5 Alternating current
For altenating field induced by six electrodes are used 6 = 27” and

0==%.
3
The liquid have following parameters:
kinematic viscosity vV ~ 10_6’"72, density of liquid p ~ 1000]‘—“?’3 and the
n
electric conductivity & ~ 1002 ~'m~!. The parameter Ko = 710~19/2,

radius R of the cylinder is 0.10m, the density of the current amplitude
jor 1041 %, the radius a of the electrodes is 0.005m, where I = 100A.

We have following parameters: K¥ ~ 31,Pr = 6.7,Kr ~ 50. For
given values of parameters we have y,, < 1074, 7,, < 10~* by M;; =
200, 0, =0.5.

We consider different connections of the conductors [L;, Ly, L3, Ly, Ls, L¢).
This connections were denoted with [1,2,3,4,5,6].

By 6 = /3 and with following coodinates of conductors centers
L1<r17¢1> = (r*700>7L2<r27¢2) = (r*7600>7L3(r37¢3) = (r*7 1200)7
L4<7‘4, ¢4) = (i’*, 1800)7L5(r57 ¢5) = (}"*,2400), L6<r67 ¢6) = (F*,?)OOO),}"* =
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0.015m,
follows

sin(0) = sin(20) =
005(9) =cos(50) =

Z l%l+zl l%l+1

7175 — et Ne

V3
2

,sin(30) =
1,c08(20) = cos(40)

0,sin(4

6) =

sin
1.
2:¢

n(56) =
0s(360) =

4 3
Y1 Y2 —2Xi Yiir3—

SE=\3(812+ 823 +834+845+856+813+84+85+ 06—

815 —826—016)-

(11.38)
In Figs. 11.50, 11.51 are represented the distributions of stream func-
tion and temperature for connections [1,2,3,4,5,6] of conductors by
maximal temperature max(7) = 10.56.
In the Figs. 11.52, 11.53 are the results for connections [2,3,5,6,1,4]
by max(7) = 6.57 and by two vortices.
In the Table 11.6 are results for different connections of electrods.

Table 11.6 The results by 6 = /3

Connections |max(7')|[minV,,max Vs]|[minV,, max V,]|[min y, max y]
[1,2,3,4,5,6](10.56 [(-1.174,1.833) [(-0.085, 0.090) [(-0.37, 0.00)
2,3,5.6,1,4][6.57  [(-0.586,0.969) |(-0.218, 0.248) |(-0.19, 0.04)
[2,4,6,1,3,5][2.97  [(-0.193,0.244) |(-0.160, 0.100) [(-0.045, 0.03)
1,4,5,2,3,6][3.70  [(-0.347,0.240) |(-0.108, 0.118) |(0,00, 0.074)
[1,6,2,5,3,4](5.55 (-0.750,0.434) |(-0.263, 0.363) |(-0.070, 0.14)
1,4,5,6,2,3][6.36  [(-0.618,1.017) [(-0.253, 0.312) |(-0.200, 0.043)
[2,6,5,3,1,4]|2.95 (-0.382,0.217) |(-0.157,0.189) |(-0.0183,0.071
3,4,5,6,2,1][8.29  [(-0.959,1.502) |(-0.216,0.228) |(-0.300, 0.00)
[1,3,5,2,4,6](2.90  [(-0.414,0.710) [(-0.236,0.135) [(-0.134, 0.003)
1,4,2,5,3,6][3.06  [(-0.383,0.658) [(-0.206,0.310) |(-0.124,0.049)
[4,5,6,1,3,2](8.28  [(-0.950,1.502) |(-0.217,0.228) |(-0.300,0.00)
We have

2 vortexes by connections [2,3,5,6,1,4],[1,3,5,2,4,6],[1,4,5,6,2,3],
3 vortexes by connections [1,6,2,5,3,4],[1,4,2,5,3,6] and 4 vortexes

by connections [2,4,6,1,3,5],[2,6,5,3,1,4].

For 6 =21/3
sin(0) =sin(40) =

follows

‘[ ,sin(30) =
cos(0) =cos(20) = cos(49) =cos(50) =

0,sin(20)

=sin(50)
—1,c0s(30) =1,
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Sy =Y V- X Vit — X Y2 +2X0 Yiva—
Ns—Net%e
S8 =V3(812+ 83+ 84+6815+856— 13— a— 85— et
815+ 86— 0O16)

(11.39)

In the Figs. 11.54, 11.55 are the results for connections [1,3,5,2,4,6]
of conductors by maximal temperature max(7) = 8.22.

This results remained also by connections
[1,3,5,6,2,4],[2,4,6,1,3,5],[4,6,2,3,5,1},[6,4,2,5,3,1].

In the Figs. 11.56, 11.57 are the results for connections [6,3,1,4,2,5]
by max(7) = 5.76 (the results remained by connection

[17376757274]7 [273747 17576]7 [27375767 174]7 [6737 1727475] by OppOSite
directions the vortices).

The maximal temperature max(7") = 6.93 are obtained by connection
[6,5,4,1,2,3],[6,2,4,1,5,3],[1,2,6,4,3,5|,(3,4,6,2,1,5],[3,6,1,2,5,4].
In the Table 11.7 are results for different connections of electrods.

11 Some application of magnetic field influence on viscous incompresible liquid

Table 11.7 The results by 6 =2x/3

Connections (max(7")|[minVy,max Vy||[minV,, max V,]|[min y, max y]
[1,2,3,4,5,6](1.31 (-0.186,0.349) |(-0.005, 0.005) [(-0.062, 0.00)
2,3,5.6,1,4][5.76  |(-0.497,0.828) |(-0.286, 0.286) |(-0.16, 0.00)
[2,4,6,1,3,5]|8.22  |(-0.861,1.342) |(-0.049, 0.049) |(-0.27, 0.00)
6,5,4,1,2,3][6.93  [(-0.772,0.772) |(-0.247, 0.247) |(-0.143, 0.143)
6,3,1,4,2,5](5.76  [(-0.828, 0.497) [(-0.286,0.286) |(0.00, 0.16)
1,6,5,4,3,2][1.31  [(-0.349,0.186) |(-0.005,0.005) |(0.062, 0.00)

For the connections [6,3,1,4,2,5],[1,3,6,5,2,4] and for

[3,4,6,2,1,5],[3,6,1,2,5,4] we have 2 symetrical vortices which ro-

tate in the opposite direction,

but for connections [2,3,4,5,6,1],[1,6,5,4,3,2] the fluid between the

cylinder rotate also in the opposite direction.

11.4.6 External magnetic field

Calculation and their graphic visualization were made for

Re € [100,1000]; S € [0.1,10],1 =0.2, a0 € [-5,5], 0 € [-1,1], 0, €
,400].
For Re = 100,S = 1(Ha = 10) we have y,, < 10~* by M;;, = 80, », =

0.3,0.8], M; € [80
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0.8, for Re = 100,S = 10 — M; = 200, ®, = 0.5, but for Re =
1000,S8 =1 — M;; =400, o, = 0.3.

For the radial magnetic field the distributions of stream function
and axial velocity depend only on r. For large value of Ha number by
the rotated walls the Hartman boundary layers developed.

In the Figs. 11.58, 11.59 we can see the distributions of axial velocity
by Ha = 0 and Ha*> = 1000, my = —5;0, @; = 1.

For the axial magnetic field the distributions of stream function
and axial velocity are non depending of Ha number and we have the
1-D solution of radial symmetry.

By the uniform magnetic field with different values of u in the
rotated flows the different form of vortexes developed. In the Figs.
11.60, 11.61 are represented the distributions of stream function by
Re =100,5 = 10,090 = —5;0,w; = 1,4 = 1;0. In the Table 11.8 we
can see the extremal value of axial velocity and of stream functions for
Re € [100,1000],S € [1,10],my = 0,; = 1. The markers [0,1,00)]*
denoted the values obtained from sum of uniform and axial magnetic
fields.

Table 11.8 Max. and min. values for uniform magnetic fields by wy = 0, w; = 1,Ha®> > 1000
U |Re |S |min(Vy)|min(V,)|max(V,) | max('¥)
0 (100 |10{-0.1610 |-0.0805|0.0754 [0.0710
1 (100 |10{-0.1701 |-0.0698|0.0646 [0.0711
oo (100 |10{-0.1746 |-0.0605|0.0534 [0.0714
0* (100 |10{-0.1427 |-0.0400|0.0384 [0.0587
1 |100 |10|-0.1324 |-0.0376 0.0364 |0.0600
o* 100 |10{-0.1277 |-0.0346|0.0322 [0.0610
400 |3 [-0.1447 |-0.0725]0.0676 [0.0627
400 |3 [-0.1586 [-0.0653]0.0590 |0.0630
1000|1 [-0.1325 |-0.0485|0.0543 [0.0559
1000|1 [-0.1561 |-0.0509|0.0506 [0.0574

—_—O0 = O

For the bipolar radial magnetic field in the Table 11.9 are the
extremal values for axial velocity and stream function. The following
distributions of the stream functions we can see in Figs. 11.62, 11.63.
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Table 11.9 Max. and min. values for bipolar magnetic field by Re = 100
o;[S |min(Vy)|[min(V,)max(V,)|max(¥)|min(¥)
1 0.1]-0.3229 |-0.0203]0.0224 [0.1049 |O.
0.5]-0.2939 |-0.0298 |0.0314 |0.0822 |0.
1.0{-0.2839 |-0.0321{0.0325 |0.0728 |O.
1 |-0.0539 |-0.0345]0.0347 (0.0 -0.0145
1 [-0.3044 |-0.0340|0.0349 |0.0704 |[-0.0145
1 |-1.0 -0.035210.0353 (0.0754 |O.

L',|U1LIIOOO§

—_——_— O = =

11.5 Conclusions

1) The distribution of electromagnetic fields and forces induced by a
three- phase system of the alternating electric current in the
conducting liquid in the cylinder of finite length has been calculated.
An original method was used to calculate the mean values of mag-
netic field and electromagnetic forces. The 2-D averaged magnetic
field, source terms for the tempeature and Lorenz’ forces, induced
by alternating current with three bar type electrodes is calculated in
cross-section of cylinder by computer program MATLAB, but 3-D
magnetohydrodynamics flow of the liquid is calculated with the help
of the computer programs FLUENT.
In future it will be interesting to obtain with the help of the finite dif-
ference method the distributions of magnetohydrodynamical and ter-
modinamical fields for 2-D problem in the fixed cross-section of cylin-
der depending on the electromagnetic and thermodinamical forces.

2)

* Using the finite difference method the distributions of magnetohy-
drodynamic flows and temperature are obtained.

* The distribution of stream function and velocity field depends on
external magnetic field and direction of gravitation has been calcu-
lated.

* In the channel with periodically placed obstacles, free convection
flows are investigated.

* From the numerical results one can conclude that the vortex forma-
tion and MHD flow are depending on the form of external magnetic
fields, direction of gravitation and on the values of Stewart number.

* In the strong transverse magnetic field the vortexes are deleted and
on the walls of the cylinders
Hartmann boundary layers are developed.
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The distribution of 2-D electromagnetic fields and forces induced
by the alternating electric current and by external magnetic fields in
the electro conducting liquid on the cross-section between two infinite
cylinder has been calculated. An original method was used to calculate
the mean values of electromagnetic forces and circulant matrices. For
the altenating current the 2-D averaged magnetic field, source terms
for the tempeature and Lorenz’ forces, induced by alternating current
with 6 bar type electrodes is calculated.

With the finite difference method the distributions of magnetohydro-
dynamics flows and maximal temperature depending of the connec-
tions of electrods are obtained.

From numerical results for the external magnetic fields follows that
the distributions of MHD flow is depending of the velocity of walls
rotation and of the form of the external magnetic fields:

1) for the radial magnetic field we have the radial symmetry of the
flow and on the walls of the cylinder the Hartman boundary layers de-
veloped,

2) for the uniform magnetic field we can see different form of vortex
formation in the fluid depending of the level for ferromagnetics.,
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Levels of azimuthal force components, Max-value = 1.3516

Fig. 11.1 Azimuthal Lorenz force

Levels of radial force components, Max-value = 0.2661

Fig. 11.2 Radial Lorenz force
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Fig. 11.3 Curl of Lorenz force
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Fig. 11.5 Domain for in-line placed cylin-
ders( 4 cylinders, BCs: 1-symetry,2- periodic,
3-walls)
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Fig. 11.6 Domain for channel flow Fig. 11.7 Levels of temperature for PC by
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Vel.Mvx = 2.9216,mvx=-0.2475,Mvy=0.27, mvy=-0.20
1 —+ T

371

Vel.Mvx = 2.4531,mvx=-0.0060,Mvy=1.43, mvy=-0.51
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Fig. 11.8 Levels of stream function in PC for
Gr=S=0

Levels psi.Mvx = 2.6091,mvx=0.0000,Mvy=2.93,mvy=-1.66
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Fig. 11.9 Levels of stream function in PC for
a=%,6r=05=25

Levels psi.Mvx = 2.9105,mvx=-0.0659,Mvy=0.16,mvy=-0.10
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Fig. 11.10 Levels of stream function in PC for
a=7%,Gr=0,5=25
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Fig. 11.11 Levels of stream function in PC for
a=0,Gr=0,§=25

Levels T,QT=1.4989,MaT = 1.0000,minT=0.9986

1 T

Fig. 11.12 Levels of vorticity function in PC
for oo = %,Gr=25000,S=2.5, =%

Fig. 11.13 Levels of temperature in PC for
a=%,6Gr=25000,§=25pB=1%
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Levels psi.Mvx = 2.4204,mvx=-0.0053,Mvy=1.51,mvy=-0.54 Levels psi.Mvx = 2.8438,mvx=-0.2340,Mvy=0.35,mvy=-0.17
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Levels psi.Mvx = 2.9250,mvx=-0.2139,Mvy=0.34,mvy=-0.23
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Fig. 11.20 Levels of stream function in CF for
S=0,Gr=25000, =0

Fig. 11.21 Levels of temperature in CF for
S=0,Gr=125000,8=0

Levels T,QT=3.3378,MaT = 1.0000,minT=0.8799
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Fig. 11.22 Levels of stream function in CF for
a=1%,8=25Gr=25000,=1%

Levels psi.Mvx = 3.5504,mvx=-0.0413,Mvy=2.03,mvy=-2.43

Fig. 11.23 Levels of temperature in CF for
=2,8=25,Gr=25000,8 =%

Levels psi.Mvx = 3.5504,mvx=-0.0413,Mvy=2.43,mvy=-2.03
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Fig. 11.24 Levels of stream function in CF for
o =3 §=25Gr=25000, =%

Fig. 11.25 Levels of stream function in CF for
a=7%,5=25_Gr=25000,8=7%
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Levels psi.Mvx = 0.0031,mvx=—0.0047,Mvy=0.00,mvy=-0.00 Levels T,QT=3.4991,MaT = 1.0000,minT=0.9993
' [ | 10.99992

Fig. 11.26 Levels of stream function in free Fig. 11.27 Levels of temperature in in free
convection CF for § = 0,Gr = 25000, = convection CF for § = 0, Gr = 25000, =

Levels psi.Mvx = 0.0047,mvx=-0.0031,Mvy=0.00,mvy=-0.00

Fig. 11.28 Levels of stream function in in free Fig. 11.29 Levels of velocity in in free con-

convection CF for § = 0,Gr =25000,8 =% vection CF for § = 0, Gr = 25000, = — %



11.5 Conclusions 375
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Fig. 11.30 Levels of stream function in in free Fig. 11.31 Levels of stream function in in
convection CF for § = 0, Gr = 25000, =0 free convection CF for S = 25, = %, Gr =
25000, =0
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Fig. 11.32 Levels of stream function in in Fig. 11.33 Levels of stream function in in
free convection CF for S =25, = %,Gr = free convection CF for § = 25, = 0,Gr =
25000, =% 25000, =0
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Levels psi.Mvx = 0.0019,mvx=-0.0022,Mvy=0.00,mvy=-0.00
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Fig. 11.34 Levels of stream function in free Fig. 11.35 Levels of velocity in free convec-
convection CF for § = 25,a = §,Gr = tion CF for § = 25,00 = §,Gr = 25000, =0
25000, =0

Levels psi.Mvx = 0.0022,mvx=-0.0019,Mvy=0.00,mvy=-0.00

S

Vel.MAX = 0.0029,Re=

40,Ha=1000.0000,mvy=

0.8
0.6
0.4
0.2
OO ' 0 0.5 ""' 15 2
Fig. 11.36 Levels of stream function in free Fig. 11.37 Levels of velocity in free convec-
convection CF for § = 25,a = 3Z,Gr = tion CF for § =25, & = 3%, Gr = 25000, =0

25000, =0
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Levels psi.Mvx = 0.0046,mvx=-0.0073,Mvy=0.01,mvy=-0.01
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Fig. 11.38 Levels of stream function

free convection PC flow for § = 0,Gr
25000, =%

in Fig. 11.39 Levels of temperature in free con-
vection PC flow for § = 0,Gr = 25000, = %

Levels psi.Mvx = 0.0029,mvx=-0.0045,Mvy=0.00,mvy=-0.00

Levels T,QT=1.4995,MaT = 1.0000,minT=0.9993

Fig. 11.40 Levels of stream function

free convection CFS flow for § = 0,Gr
25000, = %

in

Fig. 11.41 Levels of temperature in free con-
vection CFS flow for S = 0,Gr = 25000, =
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Levels psi.Mvx = 0.0021,mvx=-0.0025,Mvy=0.00,mvy=—0.00 Levels psi.Mvx = 0.0031,mvx=-0.0046,Mvy=0.00,mvy=—0.00

1& 1

Fig. 11.42 Levels of stream function in Fig. 11.43 Levels of stream function in
free convection PC flow for S = 2.5,Gr = free convection PC flow for S = 2.5,Gr =
25000, =%, 0 =% 25000, =%,a=0

Fig. 11.44 The real heat generator
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6 conductors

Fig. 11.45 The 2-D mathematical model of
the heat generator

Fig. 11.46 Uniform magnetic field by u =0 Fig. 11.47 Uniform magnetic field by u = oo
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Chapter 12

Velocity induced by the vortexes: H. Kalis, J. G.
Schatz, 2008 [82]

In new technological applications it is important to use vortex distri-
butions in area for obtaining large velocity fields [64]. In this paper
was calculated the distribution of velocity field for ideal incompress-
ible fluid, induced by a different system of finite number of vortex
threads:

1) circular vortex lines in a finite cylinder, positioned on its inner,

2) spiral vortex threads, positioned on the inner surface in the finite
cylinder or conus,

3) linear vortex lines in the plane channel, positioned on its boundary.
An original method was used to calculate the components of the ve-
locity vectors. Such kind of procedure allows calculating the velocity
fields inside the domain depending on the arrangement, of the inten-
sity and on the radii of vortex lines.

12.1 The introduction

The effective use of vortex energy in production of strong velocity
fields by different devise is one of the modern areas of applications,
dveloped during last years [65].This work presents three mathemati-
cal models of such devices. It are

1) a finite cylinder with finite number of circular vortex lines posi-
tioned on its inner surface with a fixed distance between each other,
2) a finite cylinder or conus with finite number of spiral vortex threads
positioned on its inner surface,

3) a plane channel with finite number of linear vortex lines positioned

383
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on its boundary.

It is well known that the vortex theory to begin from the Decart pa-
pers. First of all was investigated the behaviour the discreate N lineary
vortex lines with equal intensity I, which are in the vertices of regular
restangle (authors are Helmholc, Kelvin, Kirhof, see [48], [47]).The
investigation of contemporary are write in the book [66]: completely
are investigated linear vortex lines, vortex cheets, vortex wakes,
votexes of Karman, but difficulties cause the curves vortex lines.

12.2 The mathematical model

Let the cylindrical domain (conus) £,.(¢) = {(rz,¢):0<r<a-—
€2,0<z<Z,0< @ <2n(M+1)} (0 < &Z < a) contain ideal in-
compressible fluid, where a, Z are the maximal radius and legth of the
cylinder, M is the number of circulation periods. If € = 0, then we
have the circular cylinder with the radius a.

Consider the situation when the N discreate circular vortex lines
Li={(nz),r=a,z2=z},0<z<Z,0<a <a,}i=1N, with
intensity I; (m—f) and radii a;(m) are placed in the cylinder. The vortex
creates in the ideal compressible liquid the radial v, and axial v, com-
ponents of the velocity field, which rise to the liquid motion.

Similar can be consider N discreate spiral vortex threads
Si={(r,z,p),r=a—¢t,z="bt,0 =t+id}, i = 1,N, with parameter
§=2 1=5%2. 2 <o <2n(M+1),b=art,t €[0,27M].

Here 7 is the rise of the vortex threads , the spiral vortex with
Z=2nr,a=1,N=6M=1,7=1,6 =0;1, and in the Fig. 12.2 the
circular vortex lines).

The spiral vortexes creates in the ideal compressible liquid the ra-
dial v, axial v, and azimuthal v, components of the velocity field.
The linear vortex lines creates in the plane domain-channel Q,, =
{(x,y):x€0,L],y €[0,2],z € (—o0,00)} the v, v, components of the
velocity field.

The main aim of this work is to analyze the diversity of connection
schemes of vortex curves influence maximal value of velocity.
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Die Ringenwirbeln

Fig. 12.1 The surface of the cylinder with cir-
cular vortexes lines

12.3 Calculation of the velocity field for the spiral vortexes

The vector potential A is determined from the equations of vortex mo-
tion of ideal incompressible fluid

divv=0, rotv=2Q,

in the following form:

AA=—Q,

where v = rotA and v, Q the vectors of velocity and vortex fields are,
A is the Laplace operator.

Applying the Biot-Savar [48] law we receive the following form
of the vector potential created by the vortex thread W; (W; = S; or
Wi =Lj):
A(P)i = % fW,« Iﬁ
where dl is an element of the curves, P = P(x,y,z) is the fixed point
in the liquid, Q = Q(&,n, {) is the changeable point in the integral,
R(QP);i = /((z—{)? + (x—&)? + (y—mi)?).

From cylindrical coordinates x = rcos ¢,y = rsin Q.

For the spiral vortexes S;:
& =a.(t)cos(t+id),n; = a.(t)sin(t +id), { = bt, (b = at),
t €10,2xM]| (a.(t) = a — €t) and we have following components of
the vector potential:
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I; rd I; rd
Ax7i = _/_gaAy,i: _/_71’
4w R; 4 R;

Sl' Si

where R; = R(QP);.

Therefore

dé = (—a(t)sin(t +i8) — ecos(t+i8))dt, dn = (a.(t) cos(t +id) —
esin(r+1i0))dt, d{ = bdt,

Ri=\/r*+a.(t)2—2a.(t)rcos(¢ —t —i8) + (z — bt)?

and

2zM .
I; / (a.(t)sin(t +1i0) + €cos(t +id))dt

R;

W= ix

)

Y

0
2nM
A I; / (a.(t)cos(t+id) — esin(t +id))dt
Wi = i Ri
0

2nM
_Lb [ dt

Y arm R;
0

The vector components of the velocity field (radial, axial, azimuthal)
induced by the spiral vortex curves are in the form

0Ay i 0A,;
L TR ;
Ar.i
Vi =1 5 (rAgi) = 1 (12.1)
_ aAV,i aAz,i
Voi =35~ o
h

e L 2mM () sin(y(n)—ecos(y(r))dr
A =Ayicos(Q)+A,;sin(Q) = 7L [3 R; ,
Agi=—Ayisin(@) +Ay;cos(p) = 4 [o (llcoslyltpresintylu))dr

(v=0—1-id)
are the radial and azimuthal components of vector potentials.
Then from the partial derivatives
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IR _ r=ax(t)cos(y(1)) IR; _ z—bt IR _ ax(1)rsin(y(r))

ar R; > dz T R dp R; ’

follows

2nM
:% / %[(z—bt)(a*a)cos(wr))+esin<w<t>>>—ba*msin(w(t))]dr,

(12.2)
vi= g 0/ Ri (1) — reos(y(1))) — ersin(y(1))Jdr.
(12.3)

V(pJ‘ =
a2 0™ g [b(r—au(t)cos(y(1))) — (= br) (s (1) sin(y(0)) +e cos(y (1)) ldr.

For € = 0 and for the symmetrical properties respect to z = Z/2
follows that for the all components of velocity v;(r,Z/2 —z,¢) =
Vi(raZ/2+Z7(p)'

If r =0, then
2nM
I; a*(t)zdt
0,z) = — / 12.4
vil0,2) 4r ) (a(t)?+ (z—br)?)ts (124)
0
or )
(0,2) I;e? / q*dg
Vo :
A P R(@)*’
a—2nMe
where
q) = Va1 +big+ci1¢?, a1 = b*z5,by = —2b°zp,¢1 = €2 + 12,
p=a—%.
Therefore, from [67]:
_ I, (dax—2a1b;  dra—2aib
Vzl(o Z) 40171[ ZZ?R(CZI) L — 23113(21) L—
\/_Cl (az +cla2+b1/2 (125)

\/_Cl \/_Cl +Cla+bl/2
where
ar =a—2meM, dy = 4b*z5, dy = dy (€2 — b?).
If € =0, then
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IM z Z—z
v2i(0,2) = + , (12.6)
#09="7 [\/az +22 \/a2+(Z—Z)2]
and the maximal value of velocity is
IiM
v.,i(0,Z2/2) = (12.7)
2a\/1+(Z/(2a))?
byz=2/2.
The minimal value we have in the form
LM
v2,i(0,0) =v,;(0,Z) = ’ (12.8)

2a+\/1+(Z/a)?

byz=0and z=Z.
The averaged value of the axial component of velocity field in the
axes of the cylinder (r = 0) is

VA
1
Vavi = - / v2i(0,z)dz. (12.9)
0

The averaged value for e =0,r =0 is
Lm 2
Vavi = .
av,i 24 1 N 1 n (Z/a)z

(12.10)

From I. Rechenberg [65] (€ = 0) in the middle point of finite vortex
spool (z =Z/2) with the length Z the axial component of one vortex
thread is

I : Z
Vinax = Ectg(ﬁ) sm(arctan(l—))) (12.11)

where

B is the rise of vortex thread angles ( = arctan(7)) and D = 2a is the
diameter of the vortex spool.

For the minimal value of velocty ( in the points z =0 und z = Z) [65]:

I; ) VA
Vimin = %ctg(ﬁ) sm(arctan(;)). (12.12)
We have equal values of v;,,4, from (12.11) and from (12.7) using

sin(arctan(y)) = \/++_y2,y —Z ctg(B) =11 =M
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The averaged value (12.10) for € = 0 is in the following form

I; o
= —ct _— 12.13
Vay - Cg(ﬁ)aa/Z-l—l’ ( )
where o = sin(arctan(%)).
In the formulas parameters M and Z are depending:

Z
M=—— 1=t .
., t=wn(p)
Therefore from (12.4)a(12.13) for the velocity components (v,,v;, v(p)
and for azimuthal component of vector potential A
induced by N discrete vortex are

N N N N
ve=Y Vv = Y Voo = Y VeiAp =Y Agi  (12.14)
i=1 i=1 i=1 i=1

Integrals are with the trapezoid formulas calculated.
If the intensity I; of N— spiral vortex S; is equal I, than from (12.6)
- (12.12) follows:

I'NM 1
(0,7/2) = , 12.15
02/ = (12.15)
I'NM 1
v2(0,0) =:(0,2) = = —— = (12.16)
I'N , H
Vinax = E—Dctg(ﬁ) sm(arctan(B)), (12.17)
Vinin = %ctg(ﬁ) sin(arctan(%)), (12.18)

where N— number of vortex threads, H = Z— the height of the vortex
spool (in building synonym of the length) are.
For averaged value of velocity (€ = 0) we have the formula

I'NM 2
Vay = N , (12.19)
D 1+\/1+(Z/a)?
or Ja
o
Vav 8(ﬁ)a (12.20)

e
aD oa/H+1°
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where o = sin(arctan(%)).
If the averaged value v,, is known, then can be calculated from
(12 19) also the dimensionless length y = % in following form y =

52 o> where 8 =I'Nctg(B)/(nDvay) -

An example, if " = 6.0319('”72),[3 =10%(C),D = 0.25(m),

N =1,vqy = 30(%), then 6 = 1.452 and y = 2.62,Z = 0.3275(m).
The coresponding formulas (12.15, 12.17); (12.16,12.18) and (12.19,

12.20) are identical, but from (12.15),(12.16) and (12.19) follows, that

the velocity depending of the parameter M * N is, where M = T’,;’ D

From (12.15, 12.16) and (12.19) we can the corespondings multi-

NM
D
_ 1 _ 1 _ 2
L= irzp? Ry = V1+(Z/a)?’ and R = 14+4/1+(z/a)?"

12.4 Calculation of the velocity field for the circular vortex lines

For the circular one vortex lines:

E=a;cosa,n=a;sina, =z;,dé = —a;sinado, dn = a;cos ada,
d{ = 0 and from axially-symmetric condition follows that by ¢ =0
isA,;=A;;=0and

Iia;

Ayi=Agi=Ai(rz) = v

Ii7

f cosada
0 /(22 +d+r2—2aircosa’
The integral /; is equal [47]
I = n/z (1 —2sin? t)dt 2 [(
\/((Z 7i)2+(r+a;)? \/1 k251n t \/ﬁi

where [; =

el [\S)
|
=
S~—
=
—~
oy
N—
|
Kol [NS)
&
—
=
=

where
t= (06—71')/2, ki = 2\/_/61', ci = \/(a,~+ )2+ (Z—Zi)z,
K(k) = O”/ 2 \/ﬁ is the total elliptical integral of first kind,
E(k) = ﬂ/ /1= k2sin2tdt is the total elliptical integral of second
kind.

Therefore the azimuthal component of vector potential A; induced
by a circular vortex line L; with intensity I; and with radius a; is
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40 2) = 3 41 kK k)~ 2Bk

The vectorial components of velocity field (the radial and axial
components) induced by vortex line L; are

dA; 10
Vi = _a_zl’v“ 5, (rA). (12.21)
or
I z—z a? +r*+ (z—z)*
Hi(r, E(k;)— —K(ki)], (12.22
V,l(r Z) 27[1’ ¢ [ ( l) (ai—r)2+<Z_Zi)2 ( l)] ( )
I a; —r* —(z—z)*
; = ki . ki)|. 12.23
VZJ(V,Z) 27'L'Ci[ ( l)+ (ai—r)2+(Z—Zi)2 ( l)] ( )
If » =0 then )
I; a;
v;i(0,z2) = — L . (12.24)
Z7l( ) 2 (alg_’_(z_zi)z)l.s
This component of vectors have the maximal value v,; = {—ZI by
I; a*

z=2z,a; =a. By z=1z+Z/2 we have v,; = R TR AT <
F o . . .

——L__— this is the value of the component of velocity induced b

2:/a’+272 /4 P y y

spiral vortex (€ = 0).

If z=7/2,a; = a, then from (12.24) follows

I; 1
v;i(0,Z/2 (12.25)
0212 = B T (@ w a)
For the averaged value of the velocity we have
I; Z—7z; ;
v = B4 _Eg)je |l ). (1226)
DZ \J1+((Z—z)/a)? /1+(zi/a)?

IfZl Z/2 then Vavi = FW

The summary velocity field (v,,v;) and the vector potential A in-
duced by N discrete vortex lines we obtain in the form (12.14). The

hydrodynamic stream function y = y(r,z) for velocity components

V= —%%—Ig, V= %%—lf, from (12.21)is y(r,z) = rA¢(r2).
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The amount of flow through cross section [z = 79,0 < r < ap] is
Q(ao,20) = [ J§ v2(r,20)rdr d@ = 2mapA g (a0, 20) = 270W (a0, 20)-
The total amount of flow through cross cylindrical domain

[0 <2<Z,0<r<ag]is Qao) = [§ Qao,z)dz =27 [ w(ao,z)dz.

For the circular vortex line, if z;/a = 0.2i, i = 1,N,
N < 6, we can calculated following multiplicators by the factor g :
Ry(2)=YN (1+((Z)2—2z)/a)?) "' — — for (12.25),

_avyN (Z—zi)/a zi/a

Rs = ZZi:l(\/l+((Z—zi)/a)2 + \/1+(z,~/a)2) — — for (12.26).
An example, if Z/a = 1.4 then we can the multiplicators
R4((0),R4(Z/2),R4(Z),R5 for the circular vortex lines and Ry, Ry, R3
for the spiral vortexes by the factor % in the form Ry xN, Ry * N, R3

N calculated ( see Tab. 12.1).

Table 12.1 Multiplicators of the velocity for vortexes by % =14

NIR4(0)[R4(Z/2)[R4(Z)[ Rs | Ry | R; | Rs
0.94] 071 |0.26 |0.69[0.82[0.58[0.74
174 | 1.59 | 0.62 |1.46|1.641.16|1.47
237| 2.58 | 1.09 |2.27|2.46(1.74[2.21
2.85| 3.56 |1.72(3.09|3.28(2.32(2.94
320 | 444 |2523.85/4.10[2.91(3.68
347 | 5.16 |3.47|4.55/4.92(3.48(4.41

(o)W, I RO I O

In the following calculations we use the dimensionless form scaling
all the lengths to rg = a (the inlet radius of the tube), the axial v, and

radial v, velocity to vg = zf;(’ro, the azimuthal components of vector

potential Ay to Ag = {—%, the stream function y to Yy = Agrp and the
total amount of flow Q; to Qg = yyry. Here I is dimensional scaling
of vortex intensity I;,i = 1,N.

12.5 The flows field induced by linear vortex lines in a channel

For symmetry-conditions g—;’)‘| y=1 we consider half the plane channel
y € [0,1]. In the plane y = 0 we have the slip-conditions vy = vy, =0
for the velocity vectors of viscous incompressible liquid. The flow in
the channel is given by fixed amount of flow through cross section of
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the half channel Q = [, vy|,—ody. If L = oo, then v, = u(y),vy = 0 and
we have the Puaseil flow u = Q(3y — 1.5y?)- the solution of Navier-
Stokes equation in the channel €2, ,.

An the wall y = 0 of the channel are placed linear chain of vortexes
with the axis transver the (x,y) plane. The one linear vortex line in the
point (xg,yx) create the following componemts of velocity:
Liy—y _ Lix—x

“ETogr R Y T o R2

(12.27)

where R? = (x —x;)% + (y — y)%.

In the center of this point wise vortex the velocity field is infinite there-
fore we consider the vortex line with finite cross section

the circle with radius a. In this case the expressions (12.27) are valid
when R > a, but for R < a we have

Iy ( ) I
_ — Vy =
21a? Y=Yk Vy 21a?

Ve = (x — x). (12.28)

12.6 Some numerical results
12.6.1 The flow in the channel

We consider the channel with finite length L = 2.5, Puaseil flow with
0O = 3 and three wise of the chain of vortexes:
1) the main chain with coordinates and radius of the linear vortex

X =02+ (k—1)0.4,y, =2a,k=1,2,3,4,5,6,a = 0.05, (12.29)

rotate clockwise with the intensity I,
2)the second chain with coordinates and radius of the linear vortex

xp = 0.4+ (k—1)0.4,y, = 2a1,k = 1,2,3,4,5,a; = 0.025, (12.30)

rotate opposite clockwise with the intensity I,
3)the thread chain with coordinates and radius of the linear vortex

Xk :O3+(k_ 1)047yk =2a+a;,k=1,2,3,4,5,a=0.05,a; =0.025,
(12.31)
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rotate opposite clockwise with the intensity I3.

In following Table12.2 can see the amount (Q), maximal value of
velocity u, (mV) with the coordinates (mX,mY) depending of the vor-
tex intensity I, I3,I3. For the pointwise vortexes line (12.29) outside

Table 12.2 The dependence of flow velocity from intensity of the vortexes

LG Q | mV [mX|mY
0]010(3.00/4.500{0.00{1.00
-6]3(313.97|18.19|2.20(0.15
-6|41413.46/22.90(0.30|0.10
-6]310(4.62|18.36|0.20(0.15
-6 21214.49|18.63|2.20|0.15
-6|1(1]5.00{19.08|2.20(0.15
-6/ 11015.22|19.14|0.20|0.15
-6/ 0(1]5.30{19.47|2.20(0.15
-6/ 01015.52|19.86{1.00|0.15

the channel (y; = —0.025) with I} = —6 we have following results:
mV = 5.9895,mX = 1.00,mY = 0. For the Karman chain [47] of vor-
texes (preliminary vortexes line and (12.30) with y; = —0.05,I3 = 6)
we haveamV = 3.9790,mX = 0.20,mY = 0.

12.6.2 The circular vortexes lines

As the basis for the calculations of N circular vortex lines L;,i =
1,N are N < 6 chosen, which are arranged in the axial direction at
the points with following dimensionless coordinates (z; = 0.2i,r; =
a,-), i= I,_N

The dimensionless radius of the circular vortex lines a; are considered
in three forms ( the sequence a = [ay,ay,a3,a4,as,dg))

1)the constant sequence( radius of the cylinder) a. = [1,1,1,1,1,1],
2)the monotonous increasing sequence a;;, = [.75,.80,.85,.90,.95,1.0],
3)the monotonous decreasing sequence a; = [1.0,.95,.90, .85,.80,.75].
The results of numerical experiments for dimensionless values

Ve, vz, W, Qp was obtained of different dimensionless intensity of vor-
tex lines I; = oo = £6;£3;+2;1;0.5, and [ = Z/rg = 2, ag = 0.7.
The summary intensity of absolute values is equal to 6.

The velocity field is calculated an the uniform grid (n, X n;) by the
steps h; = hy = 0.1 in the r,z directions.
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The numerical results show that the velocity field induced by circular
vortex lines are concentrated inside the cylinder. The results depend
on the arrangement and on the radius of vortex lines q;.

Typical results of calculations are: the dimensionless velocity field
and the distribution of stream function in the cylinder. We can see
the velocity formation depending on the arrangement of vortices lines
with coordinates zj = [z1,22,23,24,25,26), and of the radii a;.

If I; > 0 then the all vortices move in the positive direction of Oz axis
(v, > 0), but the radii of vortex lines to stay a different way (for v, <0
the radius is decreasing and for v, > 0 the radius is increasing).

We obtain for the dimensionless values of
Vr € [Vr.mina Vr.max]; Vz.maxs Wmaxs Ot
for zj = [0.2,0.4,0.6,0.8,1.0,1.2] and for different radius of vortex
lines a; and sequence of intensity gj = [g1,£2,43,84,85,8¢] the fol-
lowing results:

1. The radii are constant a, = [1,1,1,1,1,1]
1.1 The intensity of the one vortex lines L3 is [3 =6, N =1 :
vr € (—=5.9,5.9), vzymax = 18.85, Wypar = 3.25,
v, =0if z=23 = 0.6 and v, > 0 if z > z3, therefore the radius of vor-
tex increased [48];
1.2 The intensity of the one vortex lines L3 is I3 =—-6, N=1 (the
opposite direction):
vr € (—5.9,5.9), vZiuax = —18.85, Yiax = —3.25,
the vortex move in the negative direction of Oz axes (v, <0), v, =0
if z=23 =0.6 and v, > 0 if 7 < z3, therefore the radius of vortex also
increased [48];
1.3 The intensity of the two vortex lines L3, L4 are I3 =3,13 =3, N =
2:
v € (=5.7,5.7), vzmax = 18.57, Wyar = 3.17,
the vortexes move in the positive direction of Oz axes (v, > 0), v, =0
if z=(z3+2z)/2=0.7 and v,(ap,z3) = —2.46, v.(ap,z4) = 4.37,
therefore the radius of the first vortex lines L3 decreased, but for the
second vortex lines L4 increased and the first vortex can be move
through the second vortex [48];
1.4 The intensity of the two vortex lines L3,L4 are I =-31=
3, N=2:
vy € (—=2.9,0.64), v, € (—3.0,3.0), v € (—0.32,0.32),
v, =0if z=0.7 and v,(ap,z3) = —1.72, v;(ag,z4) = 2.76, therefore
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the first vortex move to the negative direction, but the second to the
positive direction of Oz axes and the radii of the vortexes decreased
(this case is’n in [48] considered);

1.5 The intensity of the two vortex lines Ls,L4 are I3 = 3,13 =
-3, N=2:

v € (—0.64,2.9), v, € (—3.0,3.0), v € (—0.32,0.32),

v, =0if z=0.7 and v;(ag,z3) = 1.72, v,(ap,z4) = —2.76, the first
vortex move to the positive direction, but the second to the negative
direction of Oz axes and the radiis of the vortexes increased [48];

1.6 The intensity of the three vortex lines L;,L3,Ls are I} = 2,13 =
2,3=2,N=3:

v € (—4.1,4.1), vzymax = 16.34, Wye = 2.63,

v, =0 if z =23 = 0.6 and v,(ag,z1) = 15.92, v,(ap,z3) = 16.16,
v,(ag,z5) = 15.92, v.(ag,z1) = —3.8, v,(ap,z5) = 1.6, the vortexes
move in the positive direction of Oz axis and the radius of the first
vortex decreased, but of the third vortex increased;

1.7 The intensity of the three vortex lines Ly, L3, L5 are L=-20L=
2,[5=—2, N=3:

vy € (—1.6,1.6), vzyin = —5.83, WYpin = —0.74,
v,=0ifz=23=0.6,z=0.1,z= 1.1 and v;(ap,z1) = —5.67,v;(ap,z3) =
—2.42, vz(ao,z5) = —3.56, vr(ao,zl) = —-0.77, Vr<a(),Z5) = 0.77, the
vortexes move in the negative direction of Oz axis and the radius of
the first vortex decreased, but of the third vortex increased;

1.8 The intensity of the three vortex lines L, L3,Ls are I=2G=
—2,I5=2 N=3:

v € (—1.6,1.6), v, max = 5.83, Wypax = 0.74,

v, =0ifz=23=0.6 and v;(ap,z1) =5.67, v;(ap,z3) = 1.97,v;(ap,z5) =
5.67, vr(ag,z1) = 0.77, v,(ag,z5) = —0.77, the vortexes move in the
positive direction of Oz axis and the radius of the first vortex in-
creased, but of the third vortex decreased;

1.9 The intensity of the three vortex lines L;,L3,Ls are ] = —2,13 =
2,[5=2,N=3:

vy € (—4.9,2.6),v, € (—1.75,11.1), y € (—0.10, 1.45),

Vy = 0ifz=0.9 and vz(ao,zl) = —0.64, Vz(a(),Z3) = 8.28, Vz(a(),Z5) =
10.89, v,(ap,z1) = —3.17, v,(ao,z3) = —3.95, v,(ag,zs5) = 0.77, the
two vortexes L3, Ls move in the positive direction, but the first in the
negative direction of Oz axis and the radii of the two vortexes L, L3
are decreased, but of the third vortex increased;

1.10 The intensity of the three vortex lines Ly, L3,Ls are [] = 2,13 =
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2,[5=-—2, N=3:

v € (—2.6,4.9),v, € (—1.75,11.1), y € (—0.10,1.45),

v, =0if z=0.3 and v;(ap,z1) = 10.89, v;(ap,z3) = 8.28, v,(ag,zs) =
—0.64, vr(ao,zl) = —0.77, Vr(a(),Z3) = 3.95, v,(ao,z5) = 3.17, the
two vortexes L1, L3 move in the positive direction, but the vortex Ls
in the negative direction of Oz axis and the radii of the two vortexes
L3, L5 are increased, but of the third vortex L; decreased;

1.11 The intensity of the three vortex lines L, L3, L5 are L =-2L5L=
2, 5=2 N=3:

v € (—4.9,2.6),v, € (—11.1,1.75), y € (—1.45,0.10),

v, =0ifz=0.3 and v;(ap,z1) = —10.89, v,(ap,z3) = —8.28, v, (ap,z5) =
0.64, v.(agp,z1) = 0.77, v,.(ao,z3) = —3.95, v,(ap,z5) = —3.17, the
two vortexes L1, L3 move in the negative direction, but the third in the
positive direction of Oz axis and the radii of the two vortexes L3, Ls
are decreased, but of the first vortex increased.

2.The radii are increasing a;,
2.1 The non-uniform distribution of intensity gj = [2,2,1,.5,.5,0], N =
5:
v € (—12.7,7.4), v max = 21.15, Yyax = 4.6,0; = 28.34,
v, = 0 if z = 0.3, the radius of the first vortex decreased, but increased
the radii of the last four vortexes ;
2.2 The distribution of intensity gj = [2,2,2,0,0,0], N =3:
vy € (—13.3,10.02), v ax = 22.23, Wpaxr = 4.8,0; = 28.69,
v, = 01if z = 0.3, the radius of the first vortex decreased, but increased
the radii of the last vortex ;
2.3 The distribution of intensity gj = [0,0,3,3,0,0], N =2
vr € (—10.2,9.4), v, max = 21.14, Yyax = 4.64,0; = 29.20,
v, = 01f z = 0.7, the radiis of the first vortex decreased, but increased
the radii of the last vortex ;
2.4 The intensity of first vortex lines gj = [6,0,0,0,0,0], N =1
vr € (—19.2,19.2), v, max = 25.13, Wiax = 6.47,0, = 27.10,
v, = 01if z = 0.2, the radius of the vortex increased;
2.5 The intensity of second vortex lines gj = [0,6,0,0,0,0], N =1:
vy € (—15.0,15.0), vz max = 23.56, Winax = 5.69,Q; = 29.28,
v, = 0 if z = 0.4, the radius of the vortex increased;
2.6 The intensity of third vortex lines gj = [0,0,6,0,0,0], N=1:
v € (—11.8,11.8), v, max = 22.18, Wax = 5.11,0; = 29.69,
v, = 0if z = 0.3, the radius of the vortex increased;
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2.7 The intensity of fourth vortex lines gj = [0,0,0,6,0,0], N=1:
vy € (—=9.6,9.6), vz max = 20.94, Wypo = 4.66,0; = 28.72,
v, = 0 if z = 0.3, the radius of the vortex increased.

3. The uniform distribution of intensity gj = [1,1,1,1,1,1]
3.1 Radii of vortex lines are constant (the sequence a, :
vr € (—4.5,4.5), vy max = 16.21, Yo = 3.14,0, = 25.12,
v, = 01if z = 0.7, the radii of the first three vortexes decreased, but of
the least three vortexes increased ;
3.2 Radii of vortex lines are a;;, :
v € (—8.4,4.9), v max = 17.98, Wyar = 3.52,0; = 27.36,
v, = 0 if z = 0.8, the radii of the first three vortexes decreased, but of
the last two vortexes increased;
3.3 Radii of vortex lines are a; :
vy € (—4.9,8.4), vy max = 17.98, War = 3.52,0, = 27.36,
v, = 0 if z = 0.5, the radii of the first two vortexes decreased, but in-
creased the radii of last four vortexes.

4. The distribution of intensity ¢j = [2,2,.5,.5,.5,.5]
4.1 Radii of vortex lines are a;;, :
v € (—12.3,6.9), vz max = 20.19, Wyar = 4.4,0, =27.77,
v, = 0if z = 0.3, the radius of the first vortex decreased, but increased
the radii of the last five vortexes ;
4.2 Radii of vortex lines are ay :
vr € (=5.7,5.6), vomax = 17.30, Wpar = 3.4,0, =26.01,
v, = 0 if z = 0.4, the radius of the first vortex decreased, but increased
the radii of the last four vortexes.

5. The distribution of intensity ¢j = [.5,.5,.5,.5,2,2]
5.1 Radii of vortex lines are a;,, :
vy € (—=5.6,5.8), vzmax = 17.30, WYpax = 3.4,0, = 26.01,
v, = 0if z = 1.0, the radii of the first four vortexes decreased, but in-
creased the radius of the last vortex ;
5.2 Radii of vortex lines are ay :
v € (—6.8,12.3), v, max = 20.19, Yyor = 4.4,0, = 27.77,
v, = 0if z = 1.1, the radii of the first five vortexes decreased, but of
the last vortex increased.
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6. The distribution of intensity gj = [.5,.5,2,2,.5,.5]
6.1 Radii vortex lines are a;;, :
vy € (=7.4,6.6), v, max = 1947, Yar = 4.0,0; = 28.28,
v, = 0 if z = 0.7, the radii of the first two vortexes decreased, but in-
creased the radii of the last four vortexes ;
6.2 Radii of vortex lines are ay :
v € (—6.6,7.4), v, yax = 19.47, Yo = 4.0,0; = 28.28,
v, = 0if z = 0.7, the radii of the first two vortexes decreased, but in-
creased the radii of the last four vortexes.

12.6.3 The spiral vortexes in the cylinder (¢ =0)

We consider N < 6 spiral vortexes S;,i = 1,N, where started from the
points (a,0,i27/N) at the cylinder.
The dimensionless radius of the cylinder a is equal 1.

All results of the numerical experiments are for the dimension-
less values Ag(ao,z,9),v;(0,2),0(z),Q; and parametern [ = Z/a =
0.5;1;1.5;2;3, agp = 0.7 obtain.

The summary intensity of absolute values is equal to 6.

The azimuthal components of the vector potential are in the uniform
grid (N; X Ny ) by the steps h, = [/N;,hy = 27 /Ny,(N; = Ny = 30)
in the r, ¢ direction calculed.

The component Ay (z, @), (r = ap) using the trapezoid formula is cal-
culated. Figures shows typical results of calculations: the dimension-
less velocity field and the distribution of the azimuthal component of
the velocity (r = ag) in the cylinder.

The velocity formation is depending on the length / of the cylinder.
The maximum of the azimutahl components of vector potentials A,
is depending of the intensity parameter g; = I.

We obtain for the dimensionless values of v, uax, Omaxs Amax, O and
for different sequence of intensity gj = [g1,82,83,84,85,86) the fol-
lowing results:

1. The length is [ = 1.5,
(Vomax = 15.08, Qmax = 24.98,0; = 33.20)
1. The uniform distribution of the intensity
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gj=1[1,1,1,1,1,1],N=6: A, =5.68,
die Verteilung A is uniform in the ¢ direction;

2.The distribution of the intensity is gj = [2,2,1,.5,.5,0|,N=5:
Apnax = 5.68, , the distibution of A is nonuniform in the ¢ direction;
3. The distribution of the intensity is gj = [2,2,2,0,0,0],N =3 :
Amax = 5.75, , the values of Ay oscillate in the ¢ direction;

4. The distribution of the intensity is gj = [2,1,1,1,1,0],N =5
Amax = 6.14, the distibution of Ay is nonuniform in the ¢ direction;
(the maximal value 6.14 is in the point (0.75,4.2));

5. The distribution of the intensity is gj = [1.5,1.5,1.5,1.5,0,0],
N=4:

Apax = 5.68, the values of Ay weakly oscillate in the ¢ direction;

6. The distribution of the intensity is gj = [3,3,0,0,0,0],N =2:
Apmax = 5.83, the distibution of A 18 nonuniform in the ¢ direction
with 3 maximums;

7. The distribution of the intensity is gj = [6,0,0,0,0,0],N = 1:
Amax = 8.54, the distibution of Ay is nonuniform in the ¢ direction
with one maximum;

8. The distribution of the intensity is g j = [6,0,0,0,0,0], N=1,b=0:
Apmax = 8.40,v, max = 18.85, Qpax = 36.95,0; = 24.54, the distribu-
tion A is uniform in the ¢ direction ( this is the velocity field induced
by the circular vortex line (z; = 0)).

2. Different lengths /
1. The distribution of the intensity is gj = [6,0,0,0,0,0],N =1 :
Apax =842V, max = 18.29, Opnar = 34.25,0; = 16.28;
2. The distribution of the intensity is gj = [2,2,1,.5,.5,0],N =5,] =

[OS)

Amax = 511, Vo max = 10.46, Opmax = 16.36,0; = 43.03;
3. The distribution of the intensity is gj = [2,2,1,.5,.5,0],N =5,] =

\o}

Apax = 6.0386, v, 1max = 13.3286, Qo = 21.4252, Q; = 37.6009,

if Np = N, = M = 50, thenA,;ox = 6.0388,v; 1nax = 13.3286, Oax =
21.4262,0; = 37.6017;

4. The distribution of the intensity is gj = [2,2,1,.5,.5,0|,N =5,l =
1:

Amar = 7.35, V5 max = 16.86, Omax = 29.39, 0; = 26.65;

2. The distribution of the intensity is gj = [2,2,1,.5,.5,0],N =5,] =
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0.5:
Apmar = 811,V max = 18.29, Opax = 34.25,0, = 16.28.

12.6.4 The spiral vortexes in the cones (€ # 0)

In this case we have some results for behavior of spiral vortexes.
1.IfFT =6.0319(m?/s),N =1, = 10°(C)(t =tg(B) =0.1763),a =
0.125(m),Z € [0.1,1.0](m), then from the formulas (12.14, 12.18) can
be the values M;V|(e = 0); Va(e = 0.001); V3(e = 0.002); V(e =
—0.002)(m/s) calculated (see the Tab.12.3).

Table 12.3 The velocity v,, by a =0.125

Z10.1]02]03|04[05|06(0.7]|0.8/0.9|1.0
M|0.72|1.44|2.17{2.89(3.61|4.33|5.06(5.78|6.50|7.22
V1(15.3(24.1{29.0|32.0|34.0(35.4{36.5(37.3|37.9|38.5
V,[15.5(24.6|29.7(32.7(34.8|36.2|37.3|38.2|38.8|39.4
V3|15.7|25.1|30.3(33.5|35.6|37.1|38.2(39.1{39.8|40.4
V4(14.9(23.3]27.9|30.7|32.6(33.9(34.9(35.7|36.3|36.8

For V, and V3 the radii by Z = 1 decreased from a = 0.125(m) with
0.080(m) and 0.034(m), but for V4 the radius increased with 0.216(m).

2. If a = 0.25(m),then similar from the formulas (12.9, 12.20) can
be the values M;Vi(e = 0); Vo(e = 0.004); V3(e = 0.008); Va(e =
—0.008)(m/s) calculated (see the Tab.12.4).

Table 12.4 The velocity v, by a = 0.25

Z10.1]02]03|04[05|06|0.7]|0.8|0.9|1.0
M0.36/0.72|1.08(1.44(1.80|2.17|2.53|2.89|3.25|3.61
V114.19|7.64(10.2{12.1|13.5|14.5|15.4|16.0{16.6|17.0
V,(4.27|7.86|10.6{12.6{14.0|15.2{16.0{16.7|17.3|17.8
V3(4.34|8.10|11.0{13.1{14.6|15.9|16.8{17.6|18.2|18.7
V4(4.06(7.23|9.54(11.2{12.4|13.4|14.1{14.7|15.2|15.6

For V, and Vj the radii by Z = 1 decreased from a = 0.25(m) with
0.16(m) and 0.07(m), but for V4 the radius increased with 0.43(m).
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12.7 Conclusions

1. Velocity field of ideal compressible fluid influenced by curved vor-
tex field in a finite cylinder is investigated.

2. Numerical results shows that the maximum of axial velocity and to-
tal amount of flow depends on the connection method of producers
of vortex energy.

3. The maximal velocity is developed in the case of non-uniform de-
stributions of vortexes intensity and of smaller radius of vortex
lines.

4. The maximal value of the velocity induced by the spiral vortexes is
in the middle of the cylinder.

5. The behaviour of vortex lines in the ideal uncompressible flow de-
pends on the number and of the orientation of the vortex.
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